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A complex process

WOUND HEALING

Blood clotting

Inflammation

Tissue growth

Tissue remodelling
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Wound healing gives us a window into fundamental processes of
development
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Better understanding of chronic wounds which are wounds that

do not heal — sometimes for years

Chronic wounds are a huge burden on the health system

Falanga et al, Nat Rev Dis Primers 8, 50 (2022)
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Wound healing in model organisms

Adult

L IV I N G ! Male | \ " Female
44’/2 days ~'. “ \ Emono
0
, Pupa 1 day\
Drosophila melangoster First

instar

2% - 3 days larva
Wood, Jacinto et al (2002) Nat. Cell Biol. wjy
_, 2 instérr"lg‘r’v&%ré:f&?‘v’a

Ong et al (2014) Nanotoxicology

Zebrafish

Mouse
https://www.mpg.de/10973406/mice
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1. Quantifying wound
healing at cellular scales

2. From statistical mechanics ? 0 o
to active processes o= b4 ©

3. Analysis of fluctuating
tissue growth and repair
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ZIt Confocal microscopy

? ‘ Leica sp8 confocal

Fluorescent protein

GFP (green fluorescent protein)

* First isolated from
the jellyfish

* Flies can be genetically
modified to have
fluorescent protein
fused on to other proteins
we would like to image




Imaging drosophila pupa

Long-term In Vivo Tracking of Inflammatory Cell Dynamics Within Drosophila Pupae

Helen Weavers'?, Anna Franz', Will Wood®, Paul Martin'+ ve
1School of Biochemistry, Biomedical Sciences, University of Bristol, 2School of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, MRC Centre for Inflammation

Research, University of Edinburgh, Queens Medical Research Institute, “School of Physiology, Pharmacology, and Neuroscience, Biomedical Sciences, University of Bristol
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A8
Embryo
4% days 0 o
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First
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dissected pupa b : Ecad-GFP oA \

300um




-% University of
ll BRISTOL

s |MaAQING drosophila pupa

Adult

Laser ablation wound Y Y
1day\First

instar
% - 3 days larva

1 d‘ay
Third S

) - econd

instar larva W e, tar larva

................

Cell polarity
+ Cell elongation
+ Cell rearrangements

Pupation

18 hours after puparium
formation

Nov 2024 Athilingam et al, Sem. Cell. Dev. Bio, (2021)
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= |Maging drosophila pupa

How does the

epithelium heal ?

Abdomen

100pm

C Cross Section of the Wing

e
O‘_ pCh °)

. .
19, 0090 o"o‘:;,/
"'. A.AA AA_AA‘ALJ‘LA . by V1

Compare wounded to healthy tissue
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How do |
cell shape
cell motion
cell aivision

Abdomen

evolve during
reformation of
epithelia?

C Cross Section of the Wing

e N
O“ Qe 1

.-“._._ .
.19, 0090 ¢ .‘..‘.‘;’/
"'. A.AA A‘A‘AA‘ALJ,‘LA = Homocy1e

Compare wounded to healthy tissue
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Why mathematics is needed

* BIG data 1s difficult to collect and fuzzy (noisy)
wound\

Razzell et al, Development (2014)
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Each video 1s data of dimension
* How do you extract the “signal” from the “noise” ?

Q: What (else) should one measure ?
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Physical models are needed for ...

e Observation

N

* Explanation

* Analysis —
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Dynamics of wound healing

Mean area of wound
wild type

—4&— large wound wt
—— small wound wt

1250

10001 A

]
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= 750
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10 20 30 40
Time after wounding (mins)
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Cell divisions in unwounded and wounded tissue

0 mins 2 mins 4 mins 6 Mmins 8 mins
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Deep learning

Hidden Hidden Hidden Hidden Output

D e e p Le a r n i n g LayerL, LayerlL, LayerL , LayerL . Layerl

v 0.98 ) Dog

Example Layer:

Input Hidden Activation Output
Layer L, Layer L, Function of Layer L,
X, =1
1x0.6 + 0x-0.2 max(0, 0.7)
06 1 1x-0.1+0.5x0.4

x,=0 . T/

XD L @u
X, =1

) Weighted RelLU

Sum

x,=0.5
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B | mage segmentation models

1 64 64
128 64 64 2
U-net
ot output
Imai?lz 1™ o ': : ': segmentation
o m' 128 128 I
Use U-net architecture to segment images into il e
26 20 512 256
1 B e 5 Wele 3x3, ReLU
categories B —— B o
Mol — ¢ [l # max pool 2x2
& 3§ o 45 B 4 up-conv 2x2
o E_E_ = conv 1x1

Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat.

Output Methods 16, 67-70 (2019).

i

U-net
model
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Training models — finding best Welg?hts

Y = M(W, X)
Where M is the model, W is a vector of the weights and X, Y the in and
outputs.
Loss function
LW,X)=({ — MW, X))?

Y is the ground truth. To optimize the loss function we use stochastic
gradient descent.

| | W == W - l‘r‘ VL (W) Xl) . \/'J‘;F;lt 'l,/ Gradient
Where [, is the learning rate. N \
Step \ ﬁ
/
/ &
Derivative of Cos ———/ Hinimu cost
Weight »
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Anaphase starts

A U-NetCellDivision3 input Histone2-RFP channel Output

—
E\Find division
S hit crcls
53
B g ¢
z
D
—
F1 score = ol
2Tp+ Fp +F,
797 216 310 0.752
1057 28 50 0.964
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Detected cell div
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Division density in living epithelial tissue in vivo

Division density with Division density with
time unwounded time wounds
i —e— Unwounded z —e— Small wound
€ 61 — Linear model € 61— Large wound
T:L q:' Linear model
o o
= =)
z* z*
g g o 40pm
S S .
- 24 c 2 Wou2d5|teo
] o
0 0 o
2 2 & e le LB
o [a) o
0+ y T T 0+ T T T 2 o
0 50 100 150 0 50 100 150 & &
Time (mins) Time after wounding (mins)
schemeticof radial banids from wound Deviation in division density: Deviation in division density:
small wound from linear model large wound from linear model
= 1001 b = 100+ N
£ 4 £ ‘g
o 80 [ | 5 © 80 ! 5
C 2 o C 1 2 o
> — 35
o k) o 1 =
2 601 > 2 601 1 g
= 0 G € 1 0 3
2 401 oy 2 401 1 5
[} _2'0 () 4 -2 ©
v} - c o ’ c
S 20+ P 8 % 20+ ¢ 2
) & —42 7] 4 —4 =
a of B [a) 8 0 “ [a)
0 50 100 150\ 0 50 100 150
Closedwoung 11ME after wounding (mins) Closedwound TiMe after wounding (mins)
T0um 20 30 40 50 60 2080 %0 700 10um 20 30 40 50 60 70 80 %0 100 110
Radial bands at time 100 min Radial bands at time 110 min

J Turley et al, biorXiv: 10.1101/2023.03.20.533343
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Division density in living epithelial tissue in vivo

Epithelial cell divisions are oriented according to lines of
tissue tension

*Wounding triggers a delayed and synchronised (whose
orientations are not affected by wound) wave of cell
divisions back from the leading edge

*Spatio-temporal cell division analyses following wounding
reveal spatial synchronicity that scales with wound size

*Additional deep learning tools enable rapid analysis of
cell division orientation

J Turley et al, eLife 12 : RP87949 (2023)
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1. Quantifying wound healing
at cellular scales

2. Statistical mechanics of
active processes

3. Analysis of fluctuating
tissue growth and repair
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Tissue Is “active matter”

Traditional (Soft) Active
Condensed Matter Matter

Many
“particles”

vV
v |
v

kgl

Local energy
conservation
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E-coli bacteria swarm Starling murmurations

Self-propelled colloids

a ‘; .j %% . =S
S. Thutupalli et al., NJP 13, 073021 (2011)
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Thermodynamic equilibrium

“coarse-grained” system with “many” degrees of freedom

77: (7“1,...,7“]\[)
System “Hamiltonian”  H (7)

Equilibrium = steady state with

Environment Gibbs-Boltzmann distribution
Canonical Ensemble - 1
p(T) = ~ €Xp |—H/T]
Tr(p)=1 Tr= /F which maximises entropy

Sl = - [ o) 60

r

p(r) = Macroscopic properties A = (A(7)) = Tr (Ap)
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Thermodynamic equilibrium

Example : stabilised colloidal suspension

Interaction potential
Vij = U(rs — ;)
*Hamiltonian”
L1
H(r) = 5 > Vi
i7J
Phase diagram

(colloidal fluids, gels, glasses, crystals)

microscopic === MACROSCOPIC

Nov 2024
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“slow” d.o.f. Ti(t) Langevinequation iec{l,...,N} N>1

addition of " non-equilibrium driving

‘ T'=(C=1
7y = —ViH + v (r) + [i(1) v; # Vi ®(r)
(fi(t)) =0 (fi(®)f5(t)) = 206;;6(t —t')
Driving in bulk
e.g. active matter
N ¢ Q o
S

Classical £

Nov 2024
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Driven systems

Langevin equation = Fokker-Planck N
Many particle density P (x1,...,xnN;t) = <H o (x; — m(t))>
i=1

P (T + Y Vi = ! g
Ji — —HVZP — (VZIH — Uz') P

Q: Is there an equivalent to equilibrium for these systems?

A: Yes, but we must generalize the idea of a steady state

Non-equilibrium steady states

Bakry, Emery, Guionnet, ... . 5024
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Active matter has non-equilibrium steady states characterized by
2 quantities

1) A stable many particle distribution (like equilibrium)

2) A deterministic dynamical system (unlike equilibrium)

— 1 —
pss(T) = - exp [—h(T)
. : | Bakry, Emery, Guionnet, ...
The system follows the typical trajectories

X(t) = (X1(t),..., Xn(t))
%X’* — V[h(X)] Vi=v; — V;H +60V;h
The stationarity condition

D VilpssVi) =0 = h(7)

Nov 2024
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equilibrium ness
1
1 pss(T) = — exp [—h(T)]
p(F) = — exp [~ H/T] Z
> Vil(pssVi) =0 = h(7)
, dX i B}
Jeg=0 = —=0 - S dX -
! at Jss = pssv — _t =V
V=0-VH+6Vh
T.B. Liverpool, PRE 101, 042107 (2020)
sufficient but not necessary

Nov 2024
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Quantifying the tissue
dynamics on a cellular scale
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- Analysis of shapes

Let’s look at cells of healthy unwounded tissue in detail

Binary Shape Detection

Deep learning
boundary detection

Foused raw data

Watershed segmentation
:,.u-x_ " - L

raNS

Yo Polygon
R * 5-16 sides
Stage of development
B A L essesesssesceny
(Xor Yo) (Xe, Ye)

» (Xll yl)

[ > (XZI y2
« Cell polarity

+ Cell elongation y
+ Cell rearrangements

(XSl Ys)

Pupation

(X4, Y4)

..................

84h
L 7 1 Athilingam et al, Sem. Cell. Dev. Bio, (2021)
Nov 2024
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- Analysis of shapes

Cell shapes & protein distributions

Area A=// dz dy
A

1
C,=— dz d
Centre A//Ax v

1
Cy = Z//Ayd:cdy

Shape tensor f(z,y) =1

(Xor Yo) (X6, Vo)

Protein distribution tensor
Na'y dz' dy’ f(z,y) = prot. conc.

y’=y—Cy ) m/:'x_Cx

124
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- Analysis of shapes

Cell shapes & protein distributions

Area A=// dz dy
A

1
C,=— dz d
Centre A//Ax v

1
Cy = Z//Ayd:cdy

Shape tensor f(z,y) =1

(Xor Yo) (X6, Vo)

Protein distribution tensor
Na'y dz' dy’ f(z,y) = prot. conc.

124
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- Analysis of shapes

Cell shapes & protein distributions

Eigenvalues of shape tensor A1, A9

O

)‘1:)‘2 |)\1—/\2|>0

Eigenvectors = orientation

€ot

Nov 2024



Vé University of
BRISTOL

- Analysis of shapes

Cell shapes & protein distributions

Q-tensor qg=s—"Tr(s)I

(e ) = elongat
q (q2 _ql)aéo gated cell

_ [0 ¢ - _cm cos 20 sin 20 M 2 _ 2 _ 1 9
4 (Q'z —Q1) B \/i(sm29 —cos29 ) ~ | % = llqll 2’I‘r(q)

Average over N cells

Q

1 N
NZQ@

a=1

Mean

1
Variance q - N

a-
N
2|
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e Analysis of shapes

Cell shapes & protein distributions

Shape Factor Orientation

150

100

50

Average over cells

mean and variance

Nov 2024
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e Analysis of shapes

Cell shapes & protein distributions

Shape Factor Orientation

150
100
50
Average over cells :
. 0.46 0.50
mean and variance . B
\644 » g 0.45
qo
0.421t RSl
0 50 0 50
Time after 18h APF (mins) Time after 18h APF (mins)

Nov 2024
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“Noisy” dynamics of tissue
Microscopic degrees of freedom, “atoms” X = (rl, gi,--.-,TN,qN)
Positions "“z’(t) ’
Shapes  q;(t) .

U = Z (Wo(r; —rj) + Wa(r; — r;)Tr (qiq;)]

i7£]
U .5
aq?ﬂ +§i
B = 7(t) = oo =0 Y (a2 = 05°7) - (18 = 1) (i — )+
t J
<§f‘6(t)> —0 (ni*(t)) =0

(&P (1)) = Cobaardapdiydt —t)  (n2 @ () = Cobaardigdlt — t)

Nov 2024
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“Noisy” dynamics of tissue

Collective degrees of freedom

Densit 1 — —

y (Area) p(r,t) = ; (0 (r —mri(t)))
Shape p(r,t)Qap(r,t) = Z <q?3(t)5 (r — 'rz(t))>
Velocity p(r, t)V,(r,t) = Z (Opri* ()6 (r — 7i(t)))

1

Coarse grain = Hydrodynamic equations
Op(r,t) + Vodalp,Q, V] =d—a
01Qap(r,t) = 0%°[p,Q, V]
Va(r,t) =v%p,Q, V]

+ other fields ...

Nov 2024
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“Noisy” dynamics of tissue

Linearised fluctuating hydrodynamics

Density p(r,t) = p™(t) + p(r) + dp(r,t)

Shape  Qas(r,t) = Qop(t) + Qas(r) + 6Qaps(r, 1)
Velocity — Va(7,t) = V() + Va(r) + 6V (r,t)

Deterministic + Fluctuations

O1dp(r,t) = DV?5p + V&P (r,t)
0:0Qup(r,t) = [~b— 2Bp* + p* Ly V4 V] 6Qap + €25 (r, 1)
SV (r,t) = —AVdp + £9(x, 1)

D,B,L, A< Wy, Wy, b

Nov 2024
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“Noisy” dynamics of tissue

Correlation functions

(ép(r, t)6p(r’ ) t,)> ) <5Qaﬁ (r> t)‘sQa’ﬂ’ (r,’ t,)>

C

Experiment (6p0,6p0,) 4 Model (6p,60,)
— 60 =
g 0.0002 5 0.0002
< .0001 <« .0001
% 40 0.000 % 40 0.000
= 0.0000 & 0.0000
g 20 S
< -0.0001g 20 1 -0.0001
i 7]
a . -0.00025 -0.0002
i ' , 0 ) , ,
10 50 100 150 10 50 100 150
Time apart T (min) Time apart T (min)
SoExpen'ment (6Q%60Q%) D - Model (6Q'6Q*) G SoExperiment (6Q%6Q%) H - Model (6Q%6Q?)
. = o 0.00050 0.00050
§40< 0.00050 f;_ao- 0.00050 §40< g‘o_
= 0.00025 < 0.00025 = 0.00025 « 0.00025
€304 € 304 t 304 £ 304
- t0.00000 & 0.00000 - 0.00000 & 0.00000
320' 320‘ 320' 320'
- e il . o ragw. 8 i -0.00025 § = ~0.00025
@ 101 e Z 107 i % 104 % 101
= s h "o = -0.00050 © h -0.00050
oh___— 0 ok_— 0
0 50 100 0 50 100 0 50 100 0 50 100
Time apart T (min) Time apart T (min) Time apart T (min) Time apart T (min)

D,B,L,A & Wy, Wy, b, b/
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“Noisy” dynamics of tissue
Example
(dp(r, 1)op(r', 1)), (0Qap(r,t)6Qu s (r',1'))

Close to wound Far from wound

Compare to unwounded - major change only in 5 close to wound !!

Nov 2024



Calcium wave, JNK signalling and inflammation

Report
Calcium Flashes Orchestrate the Wound
Inflammatory Response through DUOX
Activation and Hydrogen Peroxide Release

Wound-induced epithelial signals Vo e i A 1 by

and Will Wood2** [1s] We coexprsss od mChon erry-moesin o visualize cortcal

Calcium wave — one of the first signals that
occurs within seconds of wounding (using act >
trom-RNAI). Does it drive these cell behaviours?

JNK signalling — Associated in literature with
shape changes in development (using act >
bskPN)

Inflammation
Test wound healing after genetic macrophage

ablation (using srp > reaper)
i 75min pw 135min pw

Nov 2024




Calcium wave, JNK signalling and inflammation

* Quantify how perturbations change parameters

e ———
A - -~

f‘* Immune = » Cell migration

ondng —> LT T et b ol

N
B  controls Calcium wave \ N e A
\ . Cell divisions
\ JNK
AN S|gnaII|ng ' @

. Time Time l
JNK signalling Immune response RN ‘ Cell shape changes

. Cell divisions S o A
. Cell migration T A m - m

Time Time . Cell shape changes

J Turley et al, bioarxiv (2024)
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e CONClUSiONS and perspectives

machine learning tools have been developed and are being used to
observe fruitfly pupa wounds in wing tissue

We can thus analyse the tissue behaviour at the cellular scale with
unprecedented detail (in particular fluctuations!)

We are beginning to come up with mathematical models that give
explanations of some of the emergent behaviour that we see ....

... but we are definitely closer to the beginning of the story than the

end
M. Olenik et al, PRE, 107, 014403 (2023)

J Turley et al, eLife 12 : RP87949 (2023)
J Turley et al, Development 151 : dev202943 (2024)
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