

The **physics and mathematics** of wound healing

Tanniemola B Liverpool

School of Mathematics University of Bristol

Erlangen 6 Nov 2024

Wound healing

A complex process

Blood clotting Inflammation

Tissue growth

Tissue remodelling

Martin (1997) Science

Wound healing gives us a window into fundamental processes of

development

Better understanding of **chronic wounds** which are wounds that do not heal – sometimes for years

Chronic wounds are a huge burden on the health system

Falanga et al, Nat Rev Dis Primers 8, 50 (2022)

Wound healing in model organisms

LIVING!

Drosophila melangoster

Wood, Jacinto et al (2002) Nat. Cell Biol.

Ong et al (2014) Nanotoxicology

Zebrafish

https://www.mpg.de/10973406/mice

Overview

1. Quantifying wound healing at cellular scales

2. From statistical mechanics to active processes

3. Analysis of fluctuating tissue growth and repair

Acknowledgements

Jake Turley (Mathematics, Bristol)
Mark Olenik

Henry Andralojc

Isaac Chenchiah

Deems Ioratim-Uba Silke Henkes

Helen Weavers (Biochemistry, Bristol)
Paul Martin
Stephen Cross

Keith Harding (Medicine, Cardiff)

Engineering and Physical Sciences Research Council

Medical Research Council

Nov 2024

Confocal microscopy

Leica sp8 confocal

Fluorescent protein

GFP (green fluorescent protein)

- First isolated from the jellyfish
- Flies can be genetically modified to have fluorescent protein fused on to other proteins we would like to image

RFP (red fluorescent protein)

Long-term In Vivo Tracking of Inflammatory Cell Dynamics Within Drosophila Pupae

Helen Weavers^{1,2}, Anna Franz¹, Will Wood³, Paul Martin^{1,4}

¹School of Biochemistry, Biomedical Sciences, **University of Bristol**, ²School of Cellular and Molecular Medicine, Biomedical Sciences, **University of Bristol**, ³MRC Centre for Inflammation Research, **University of Edinburgh, Queens Medical Research Institute**, ⁴School of Physiology, Pharmacology, and Neuroscience, Biomedical Sciences, **University of Bristol**

Adult Female Second instar larva Adult Female First instar larva

Collect confocal videos

Nov 2024

Laser ablation wound

18 hours after puparium formation

How does the

epithelium heal?

Single layer of epithelium Coverslip

Adipocyte

Hemolymph

Hemocyte

Compare wounded to healthy tissue

How do

cell shape cell motion cell division

evolve during reformation of epithelia?

Compare wounded to healthy tissue

Why mathematics is needed

• BIG data is difficult to collect and fuzzy (noisy)

Razzell et al, Development (2014)

cell shape

cell motion

cell division

Each video is data of dimension

$$\mathbb{R}^{2\times93\times42\times512\times512}$$

• How do you extract the "signal" from the "noise"?

Q: What (else) should one measure?

Physical models are needed for ...

Dynamics of wound healing

shape

motion

divisions

Cell divisions in unwounded and wounded tissue

Deep Learning

Example Layer:

Image segmentation models

Use U-net architecture to segment images into categories

Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. $Output \quad \textit{Methods 16}, 67-70 \ (2019).$

Input

U-net model

Training models – finding best weights

$$Y = M(W, X)$$

Where M is the model, W is a vector of the weights and X, Y the in and outputs.

Loss function

$$L(\mathbf{W}, X) = (\hat{Y} - M(\mathbf{W}, X))^2$$

 \hat{Y} is the ground truth. To optimize the loss function we use stochastic gradient descent.

$$\boldsymbol{W} = \boldsymbol{W} - l_r \, \nabla L(\boldsymbol{W}, X_i)$$

Where l_r is the learning rate.

Detected cell divisions

Division density in living epithelial tissue in vivo

J Turley et al, biorXiv: 10.1101/2023.03.20.533343

Division density in living epithelial tissue in vivo

- •Epithelial cell divisions are oriented according to lines of tissue tension
- •Wounding triggers a delayed and synchronised (whose orientations are not affected by wound) wave of cell divisions back from the leading edge
- •Spatio-temporal cell division analyses following wounding reveal spatial synchronicity that scales with wound size
- Additional deep learning tools enable rapid analysis of cell division orientation

J Turley et al, eLife 12: RP87949 (2023)

divisions

motion

shape

Overview

1. Quantifying wound healing at cellular scales

2. Statistical mechanics of active processes

3. Analysis of fluctuating tissue growth and repair

Tissue is "active matter"

	Traditional (Soft) Condensed Matter	Active Matter
Many "particles"		
Interactions		
k_BT		
Local energy conservation	Nov. 2024	

Nov 2024

E-coli bacteria swarm

Starling murmurations

Self-propelled colloids

S. Thutupalli et al., NJP 13, 073021 (2011)

Thermodynamic equilibrium

"coarse-grained" system with "many" degrees of freedom

Canonical Ensemble

$$\operatorname{Tr}(\rho) = 1 \quad \operatorname{Tr} \equiv \int_{\vec{r}}$$

$$S[
ho] = -\int_{ec{r}}
ho(ec{r}) \ln
ho(ec{r})$$

$$\rho(\vec{r}) \Rightarrow \text{Macroscopic properties} \quad A = \langle A(\vec{r}) \rangle = \text{Tr}(A\rho)$$

$$\{r_i\}$$
 $i \in \{1, \dots, N\}$ $N \gg 1$ $\vec{r} = (r_1, \dots, r_N)$

"Hamiltonian" $\mathcal{H}(\vec{r})$

Equilibrium = steady state with Gibbs-Boltzmann distribution

$$\rho(\vec{r}) = \frac{1}{Z} \exp\left[-\mathcal{H}/T\right]$$

which maximises entropy

$$A = \langle A(\vec{r}) \rangle = \operatorname{Tr}(A\rho)$$

Thermodynamic equilibrium

Example: stabilised colloidal suspension

Interaction potential

$$V_{ij} = U(|\mathbf{r}_i - \mathbf{r}_j|)$$

"Hamiltonian"

$$\mathcal{H}(\vec{r}) = \frac{1}{2} \sum_{i \neq j} V_{ij}$$

Phase diagram

(colloidal fluids, gels, glasses, crystals)

microscopic

MACROSCOPIC

Driven systems

"slow" d.o.f. $r_i(t)$ Langevin equation $i \in \{1, \dots, N\}$ $N \gg 1$

$$i \in \{1, \dots, N\} \ N \gg 1$$

addition of → non-equilibrium driving

$$\dot{\mathbf{r}}_i = -\nabla_i \mathcal{H} + v_i(\vec{r}) + f_i(t) \qquad v_i \neq \nabla_i \Phi(\vec{r})$$

$$T = \zeta = 1$$

$$v_i \neq \nabla_i \Phi(\vec{r})$$

$$\langle f_i(t) \rangle = 0$$

$$\langle f_i(t) \rangle = 0$$
 $\langle f_i(t) f_j(t') \rangle = 2\theta \delta_{ij} \delta(t - t')$

Driving in bulk

e.g. active matter

$$\int_{S} |v_i| \propto S$$

Classical

E

Driven systems

Langevin equation → Fokker-Planck

Many particle density $P\left(x_1,\ldots,x_N;t\right) = \left\langle \prod_{i=1}^N \delta\left(x_i - r_i(t)\right) \right\rangle$

$$\frac{\partial}{\partial t} P(\vec{x}; t) + \sum_{i=1}^{N} \nabla_i J_i = 0$$
$$J_i = -\theta \nabla_i P - (\nabla_i \mathcal{H} - \mathbf{v_i}) P$$

Q: Is there an equivalent to equilibrium for these systems?

A: Yes, but we must generalize the idea of a steady state

Non-equilibrium steady states

A theorem

Active matter has non-equilibrium steady states characterized by 2 quantities

- A **stable** many particle distribution (like equilibrium)
- 2) A deterministic dynamical system (unlike equilibrium)

$$ho_{ss}(ec{x}) \equiv rac{1}{Z} \exp{[-h(ec{x})]}$$
 Bakry, Emery, Guionnet, ...

The system follows the typical trajectories

$$\vec{X}(t) = (X_1(t), \dots, X_N(t))$$

$$\frac{d}{dt}\vec{X} = \vec{V}[h(\vec{X})] \qquad V_i = v_i - \nabla_i \mathcal{H} + \theta \nabla_i h$$

$$\frac{d}{dt}\vec{X} = \vec{V}[h(\vec{X})]$$

$$V_i = v_i - \nabla_i \mathcal{H} + \theta \nabla_i h$$

The stationarity condition

$$\sum_{i} \nabla_{i} \left(\rho_{ss} V_{i} \right) = 0 \implies h(\vec{x})$$
 (*)

Summary

equilibrium

$$\rho(\vec{r}) = \frac{1}{Z} \exp\left[-\mathcal{H}/T\right]$$

$$\vec{J}_{eq} = 0 \quad \Rightarrow \quad \frac{d\vec{X}}{dt} = 0$$

T.B. Liverpool, PRE 101, 042107 (2020)

ness

$$\rho_{ss}(\vec{x}) \equiv \frac{1}{Z} \exp\left[-h(\vec{x})\right]$$

$$\sum_{i} \nabla_{i} \left(\rho_{ss} V_{i}\right) = 0 \implies h(\vec{x})$$

$$\vec{J}_{ss} = \rho_{ss} \vec{V} \implies \frac{d\vec{X}}{dt} = \vec{V}$$

$$\vec{V} = \vec{v} - \vec{\nabla} \mathcal{H} + \theta \vec{\nabla} h$$

sufficient but not necessary

Quantifying the tissue dynamics on a cellular scale

Let's look at cells of healthy unwounded tissue in detail

Binary Shape Detection

Polygon 5-16 sides

Stage of development

Athilingam et al, Sem. Cell. Dev. Bio, (2021)

Cell shapes & protein distributions

Area

$$A = \iint_A dx dy$$

$$C_x = \frac{1}{A} \iint_A x \, dx \, dy$$

$$C_y = \frac{1}{A} \iint_A y \, dx \, dy$$

Shape tensor f(x,y) = 1

$$s_{xx} = -\frac{1}{A^2} \iint_A f(x', y') y'^2 dx' dy'$$

$$s_{xy} = \frac{1}{A^2} \iint_A f(x', y') x' y' dx' dy'$$

$$s_{yy} = -\frac{1}{A^2} \iint_A f(x', y') x'^2 dx' dy'$$

Protein distribution tensor

$$f(x,y) = \text{prot. conc.}$$

$$y' = y - C_y \quad , \quad x' = x - C_x$$

Cell shapes & protein distributions

Area

$$A = \iint_A dx \, dy$$

Centre

$$C_x = \frac{1}{A} \iint_A x \, dx \, dy$$

$$C_y = \frac{1}{A} \iint_A y \, dx \, dy$$

Shape tensor f(x,y) = 1

$$s_{xx} = -\frac{1}{A^2} \iint_A f(x', y') y'^2 dx' dy'$$

$$s_{xy} = \frac{1}{A^2} \iint_A f(x', y') x' y' dx' dy'$$

$$s_{yy} = -\frac{1}{A^2} \iint_A f(x', y') x'^2 dx' dy'$$

Protein distribution tensor

$$f(x,y) = \text{prot. conc.}$$

Analysis of shapes

Cell shapes & protein distributions

Eigenvalues of shape tensor λ_1, λ_2

$$\lambda_1 = \lambda_2$$

Eigenvectors → orientation

Cell shapes & protein distributions

Q-tensor
$$q = s - \text{Tr}(s)I$$

$$q = \begin{pmatrix} q_1 & q_2 \\ q_2 & -q_1 \end{pmatrix} \neq 0 \implies \text{elongated cell}$$

$$m{q} = \left(egin{array}{cc} q_1 & q_2 \ q_2 & -q_1 \end{array}
ight) = rac{q_0}{\sqrt{2}} \left(egin{array}{cc} \cos 2 heta & \sin 2 heta \ \sin 2 heta & -\cos 2 heta \end{array}
ight) = m{q}_0 \hat{m{q}} \qquad q_0^2 = ||m{q}||^2 = rac{1}{2} {
m Tr}(m{q}^2)$$

$$q_0^2 = ||\mathbf{q}||^2 = \frac{1}{2} \text{Tr}(\mathbf{q}^2)$$

Average over N cells

$$Q\hat{\boldsymbol{Q}} = \frac{1}{N} \sum_{\alpha=1}^{N} \hat{\boldsymbol{q}}_{\alpha}$$

Mean

$$\sigma_q^2 = \frac{1}{N} \sum_{\alpha=1}^{N} \left\| \hat{\boldsymbol{q}}_{\alpha} - \hat{\boldsymbol{Q}} \right\|^2$$

Nov 2024

$$\alpha \in [1, 2, \cdots, N]$$

Analysis of shapes

Cell shapes & protein distributions

50

Orientation

0.5 $_{S\,f}$ 1.0 q_0

Shape Factor

Average over cells

mean and variance

25

8.0

Analysis of shapes

Cell shapes & protein distributions

Average over cells

mean and variance

Nov 2024

Microscopic degrees of freedom, "atoms" $\vec{X} = (r_1, q_1, \dots, r_N, q_N)$

Positions
$$r_i(t)$$

$$U = \sum_{i \neq j} \left[W_0(\boldsymbol{r}_i - \boldsymbol{r}_j) + W_2(\boldsymbol{r}_i - \boldsymbol{r}_j) \operatorname{Tr} \left(\boldsymbol{q}_i \boldsymbol{q}_j \right) \right]$$

$$\begin{split} \zeta_{q}\partial_{t}q_{i}^{\alpha\beta} &= -b\left(q_{i}^{\alpha\beta} - \bar{q}^{\alpha\beta}\right) - \frac{\partial U}{\partial q_{i}^{\alpha\beta}} + \xi_{i}^{\alpha\beta} \\ \zeta\partial_{t}r_{i}^{\alpha} &= \bar{V}^{\alpha}(t) - \frac{\partial U}{\partial r_{i}^{\alpha}} - b'\sum_{j}\left(q_{i}^{\alpha\beta} - q_{j}^{\alpha\beta}\right) \cdot \left(r_{i}^{\beta} - r_{j}^{\beta}\right)f(|\boldsymbol{r}_{i} - \boldsymbol{r}_{j}|) + \eta_{i}^{\alpha} \\ \left\langle \xi_{i}^{\alpha\beta}(t)\right\rangle &= 0 \\ \left\langle \xi_{i}^{\alpha\beta}(t)\xi_{j}^{\alpha'\beta'}(t')\right\rangle &= C_{q}\delta_{\alpha\alpha'}\delta_{\beta\beta'}\delta_{ij}\delta(t - t') \quad \left\langle \eta_{i}^{\alpha}(t)\eta_{j}^{\alpha'}(t')\right\rangle = C_{v}\delta_{\alpha\alpha'}\delta_{ij}\delta(t - t') \end{split}$$

Collective degrees of freedom

Density
$$\left(\frac{1}{\mathsf{Area}}\right)$$
 $\rho({m r},t) = \sum_i \left\langle \delta\left({m r} - {m r}_i(t)\right) \right\rangle$ Shape $ho({m r},t) Q_{\alpha\beta}({m r},t) = \sum_i \left\langle q_i^{\alpha\beta}(t) \delta\left({m r} - {m r}_i(t)\right) \right\rangle$ Velocity $ho({m r},t) V_{\alpha}({m r},t) = \sum_i \left\langle \partial_t r_i^{\alpha}(t) \delta\left({m r} - {m r}_i(t)\right) \right\rangle$

Coarse grain → Hydrodynamic equations

$$egin{aligned} \partial_t
ho(m{r},t) +
abla_{lpha} J_{lpha}[
ho,m{Q},m{V}] &= d-a \ \partial_t Q_{lphaeta}(m{r},t) &= \Theta^{lphaeta}[
ho,m{Q},m{V}] \ V_{lpha}(m{r},t) &=
u^{lpha}[
ho,m{Q},m{V}] \end{aligned}$$

+ other fields ...

Linearised fluctuating hydrodynamics

Density
$$\rho(\boldsymbol{r},t)=\rho^*(t)+\bar{\rho}(\mathbf{r})+\delta\rho(\boldsymbol{r},t)$$
 Shape
$$Q_{\alpha\beta}(\boldsymbol{r},t)=Q_{\alpha\beta}^*(t)+\bar{Q}_{\alpha\beta}(\mathbf{r})+\delta Q_{\alpha\beta}(\boldsymbol{r},t)$$
 Velocity
$$V_{\alpha}(\boldsymbol{r},t)=V_{\alpha}^*(t)+\bar{V}_{\alpha}(\mathbf{r})+\delta V_{\alpha}(\boldsymbol{r},t)$$

Deterministic + Fluctuations

$$\partial_t \delta \rho(\mathbf{r}, t) = D \nabla^2 \delta \rho + \nabla_{\alpha} \xi_{\alpha}^{\rho}(\mathbf{r}, t)$$

$$\partial_t \delta Q_{\alpha\beta}(\mathbf{r}, t) = [-b - 2B\rho^* + \rho^* L_{\gamma\epsilon} \nabla_{\gamma} \nabla_{\epsilon}] \delta Q_{\alpha\beta} + \xi_{\alpha\beta}^{Q}(\mathbf{r}, t)$$

$$\delta V_{\alpha}(\mathbf{r}, t) = -A \nabla_{\alpha} \delta \rho + \xi_{\alpha}^{Q}(\mathbf{r}, t)$$

$$D, B, L, A \Leftrightarrow W_0, W_2, b, b'$$

Correlation functions

$$\langle \delta
ho(\mathbf{r},t) \delta
ho(\mathbf{r}',t')
angle$$
 , $\langle \delta Q_{\alpha\beta}(\mathbf{r},t) \delta Q_{\alpha'\beta'}(\mathbf{r}',t')
angle$ Experiment $\langle \delta
ho_n \delta
ho_n \rangle$ 0.0002 0.0001 0.0000 0.0001 0.0000

$$D, B, L, A \Leftrightarrow W_0, W_2, b, b'$$

Example

Compare to unwounded - major change only in b close to wound !!

Calcium wave, JNK signalling and inflammation

Wound-induced epithelial signals

Calcium wave – one of the first signals that occurs within seconds of wounding (using act > trpm-RNAi). Does it drive these cell behaviours?

JNK signalling – Associated in literature with shape changes in development (using $act > bsk^{DN}$)

Inflammation

Test wound healing after genetic macrophage ablation (using *srp* > *reaper*)

Calcium wave, JNK signalling and inflammation

Quantify how perturbations change parameters

J Turley et al, bioarxiv (2024)

BioDesign Institute Conclusions and perspectives

machine learning tools have been developed and are being used to **observe** fruitfly pupa wounds in wing tissue

We can thus **analyse** the tissue behaviour at the cellular scale with unprecedented detail (in particular fluctuations!)

We are beginning to come up with mathematical models that give **explanations** of <u>some</u> of the emergent behaviour that we see

... but we are definitely closer to the beginning of the story than the end

M. Olenik et al, PRE, 107, 014403 (2023)

J Turley et al, eLife 12: RP87949 (2023)

J Turley et al, Development 151 : dev202943 (2024)