

### Constructing a consistent and computable 'quantum spacetime'

### New tensor-network algorithms

Seth Kurankyi Asante, FSU Jena

DIPHER 24 - Diversity in Physics for the Diversity of Physics Friedrich-Alexander Universität, Erlangen November 6, 2024



# Outline

## Constructing quantum space-time

Path Integral formulation

### \* Quantum geometry

Spin networks

## \* Tensor network algorithms

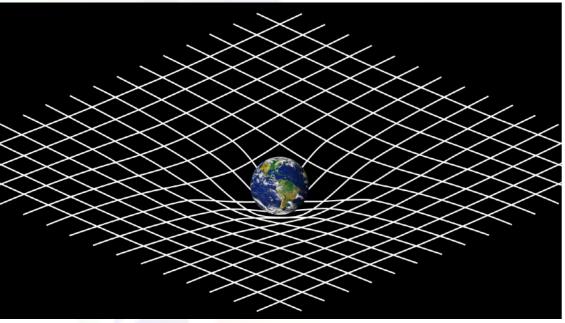
Computational challenges and opportunities

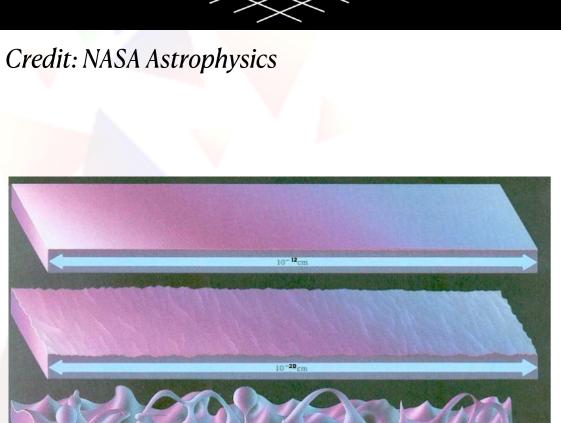
\* Diversity experiences

• The good and the bad

Gravity

#### Gravity = geometry of spacetime





Sending of light

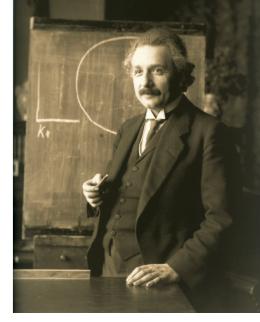
Gravitational waves

Black holes

Breakdown of at very short distances

Quantum gravity: Structure of quantum spacetime

3

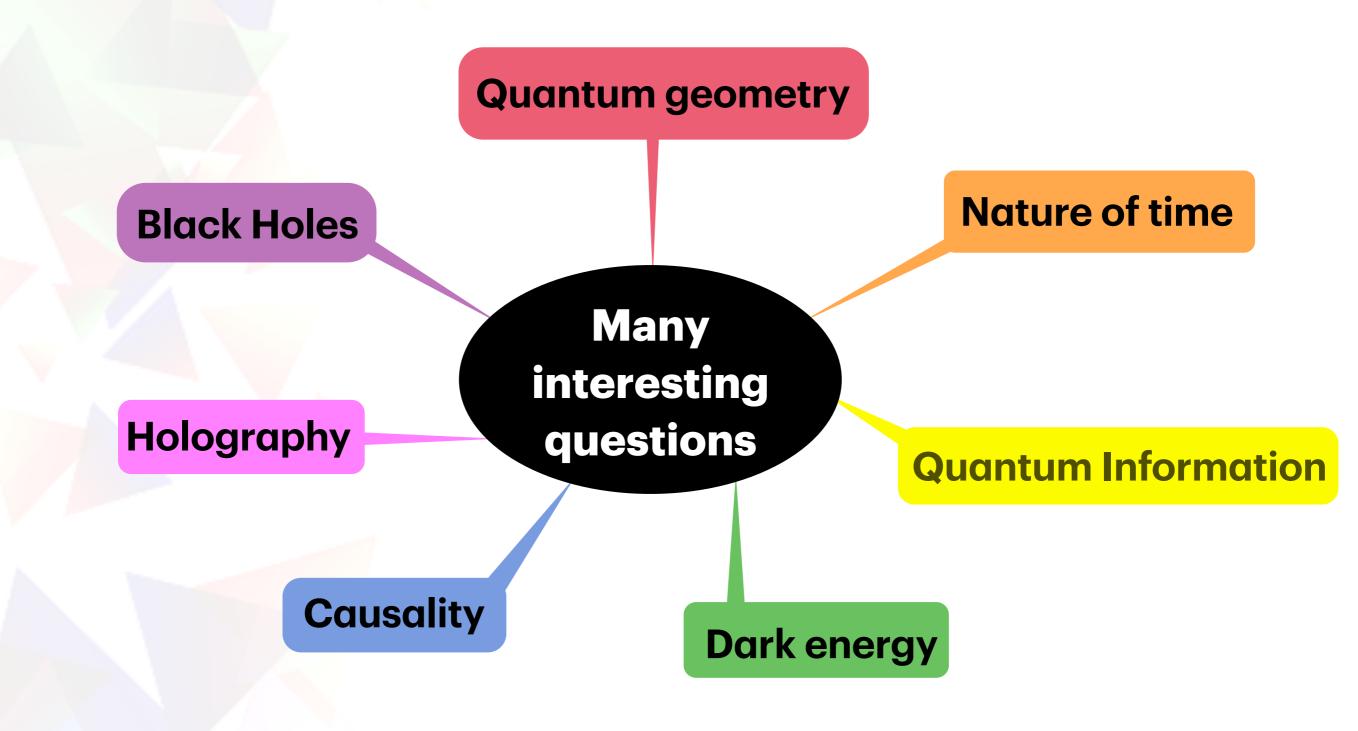


[A. Einstein]

Credit: universe-review.ca

# Quantum spacetime

## A change of perspective

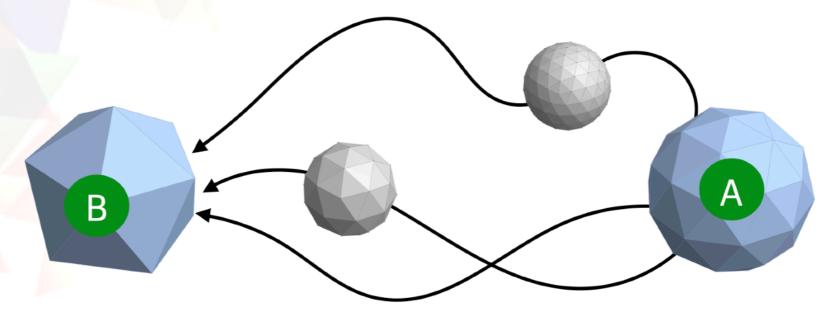


# How do we define a quantum spacetime?

[Feynman, Schwinger,..]

 $Z[A;B] = \int D\mu(\text{geom}) \exp(iS[\text{geom}])$ 

Path Integral A formalism adopted by many approaches



### **Statistics of geometry**

Transition amplitude between states of geometry

• Sum over histories of 'all possible' geometries

What are the fundamental constituents of quantum geometry?

### **Quantum geometry**

### **Diversity of representations of geometry**

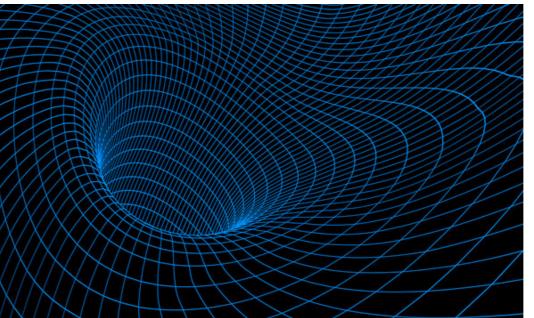
Metric geometry

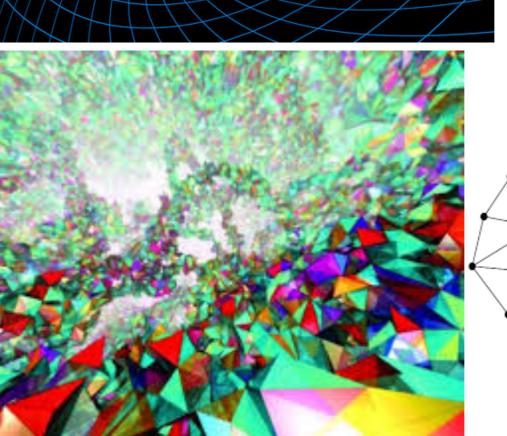
Discrete structures

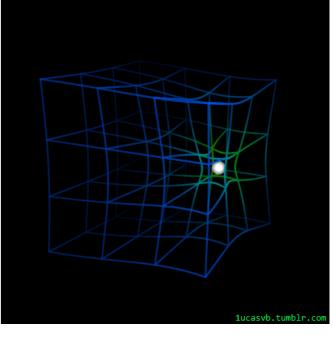
Spin networks

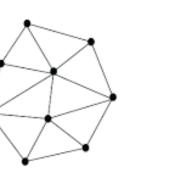
Higher-gauge theories

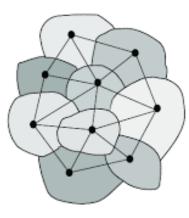
Emergent geometry





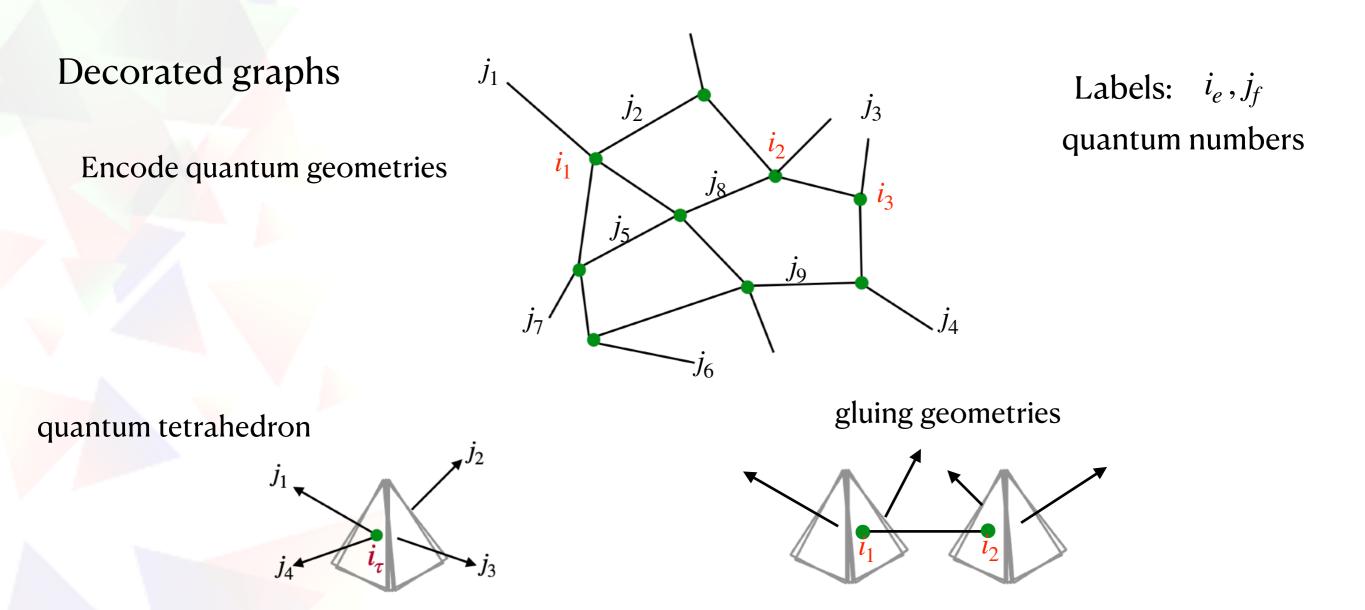






### **Quantum geometry**

**Spin Networks** Mathematically well-defined structures



[*R. Penrose.*.]

Functional space of connections invariant under local gauge transformations

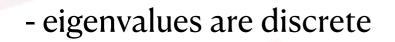
7

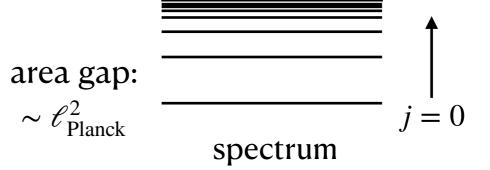
### **Quantum geometry**

**Spin Networks** Some properties of quantum geometry

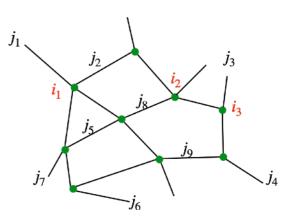
Discrete quanta of space

- well-defined 'operators' that measure: lengths, areas, volumes
- non-commuting geometric operators

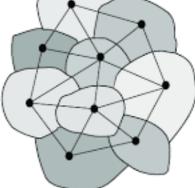




8







### Dynamics of quantum geometry

### **Spin foam models**

Path integral over 'discrete' quantum geometries

- sum over histories of spin-networks

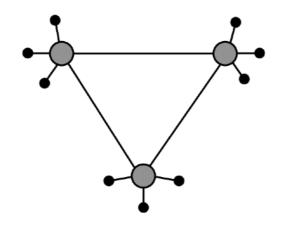
$$Z[A;B] = \sum_{\{i_e, j_t\}} f$$

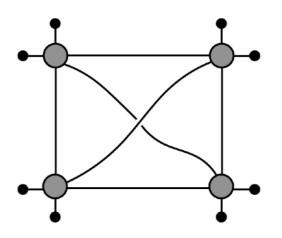
- defined on a fixed graph or lattice

[ Perez, Livine, Bianchi, Riello, Oriti, Haggard, Geiller, Dittrich, Bahr, Ryan, Steinhaus, Delcamp, Goeller, Dupius, Girelli, Engle, Pereira, Rovelli, Friedel, Ashtekar, Smolin, Fairbain, Barett, Meusburger, Speziale, Vidotto, Dona, Gozzini, Sarno, Thiemann, Han, Lui, Lewandowski, Corichi, Kaminski, Ricardo, Oliveira, Krasnov, ...., SKA, .....]

## Examples

**Triangulations** 

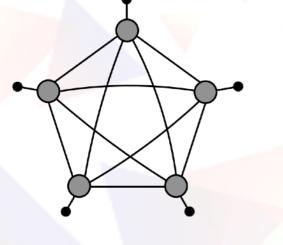




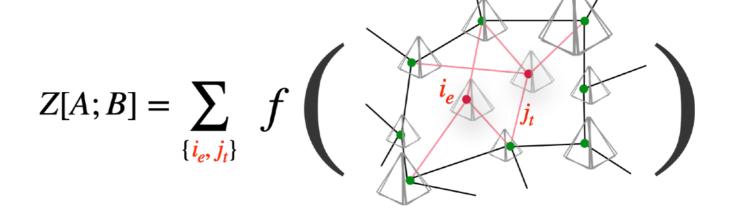
4-simplex

<u>**3</u>**-3 triangulation</u>

**<u>4</u>**-2 triangulation



5-1 triangulation



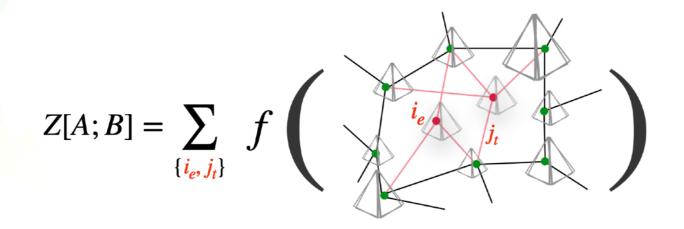
Follow the connectivity/combinatorics of the triangulation

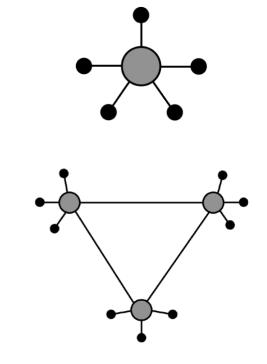
10

## **Partition function**

### **Spin foam models**

Technical detail: How do the partition functions look like?





 $Z(\Delta; \{j, \mathbf{n}\}) = \sum_{\{i_e, j_f\}} \prod_f A_f(j_f) \prod_e A_e(i_e) \prod_v A_v(j_f, i_e) \prod_k C_{i_k}(j_f, \mathbf{n})$ 

$$A_f(j_f) = 2j_f + 1 = d_j, \qquad A_e(i_e) = \langle i_e | i_e \rangle^{-1}$$

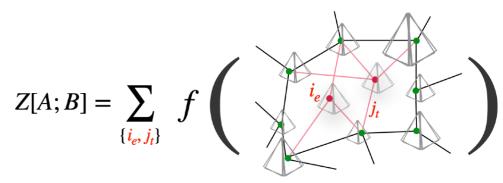
$$A_{\nu}(j_{f}, i_{e}) = \{15j(i_{e}, j_{f})\} = \begin{cases} i_{1} & j_{13} & i_{3} & j_{35} & i_{5} \\ j_{12} & j_{23} & j_{34} & j_{45} & j_{15} \\ j_{25} & i_{2} & j_{24} & i_{4} & j_{14} \end{cases}$$

$$i_{5} - i_{1} - i_{2} - i_{3} - i_$$

 $C_{i_k}(j_f,\mathbf{n}) = \stackrel{\mathbf{n}}{\bullet} i_k$ 

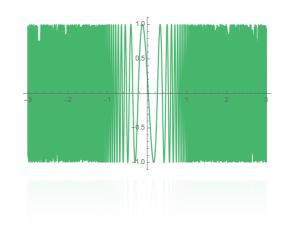
coherent vector

# Challenges Computations



## **Computational challenges**

- Sum over many degrees of freedom
- Highly oscillatory functions
- High dimensional integrals



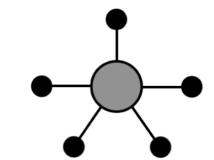
### Limited analytical results

• Asymptotic formula for 'simplest' possible graph

$$Z_{v} \sim \mathcal{N} \cos\left(S_{\text{Regge}} + \kappa\right)$$

- connection to discrete gravity (Regge action)

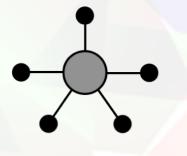




[Barett et. al .....]

# **Challenges** Numerical computations





4-simplex

**3**-3 triangulation

5-1 triangulation

Libraries: sl2cfoam, sl2cfoam-next

• perform sums using tensor contractions

• make use of <u>HPC</u> resources

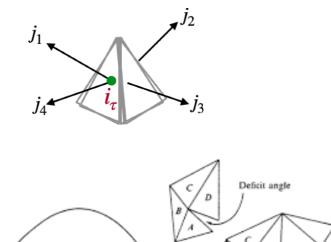


## **Effective spin foam models**

#### Idea:

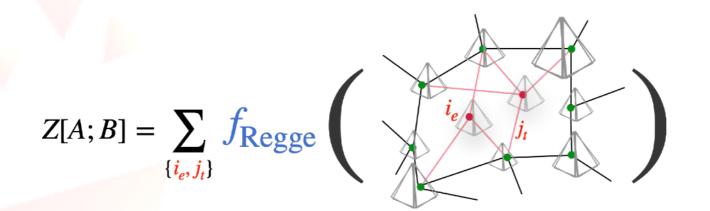
Keep the principles of discrete quantum geometries

discrete area spectrum, non-commutativity



Use simple amplitudes

Regge calculus [Regge 61]



**Advantages:** 

Fast computations, control and test features with complex examples

## **Improving numerics**

 $\simeq \mathcal{O}(d_i^6)$ 

### A tensor-network algorithm

[Steinhaus, <u>SKA]</u> [2406.19676 [gr-qc]]

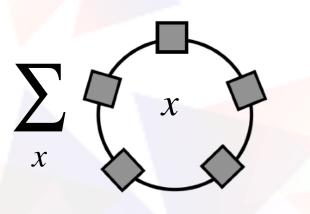




TNAlgo-su2bf

• reorganize sums and products of functions to contract low-valent tensor

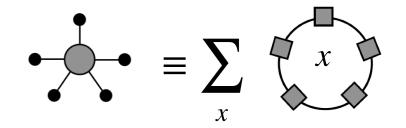
- reduced to matrix contractions



 $\simeq \mathcal{O}(d_j^4)$ 

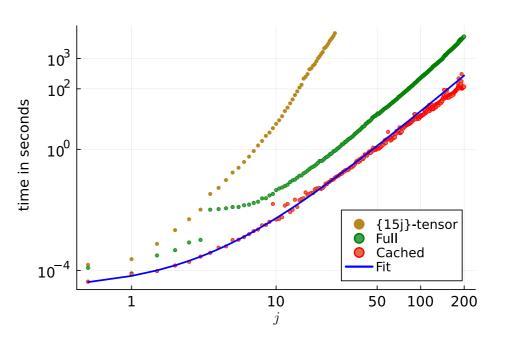
## **Tensor network algorithm**

**Benchmarks** 



Equilateral vertex : parametrized by a boundary spin *j* 





#### Time (secs)

| Spins          | 15j-tensor | TN-Algo. | Cached |
|----------------|------------|----------|--------|
| <i>j</i> = 10  | 6.95       | 0.045    | 0.005  |
| <i>j</i> = 25  | 5692.78    | 0.86     | 0.10   |
| <i>j</i> = 100 |            | 234.03   | 12.32  |

© APPLE M2 PRO-16GB RAM

## **Tensor network algorithm**

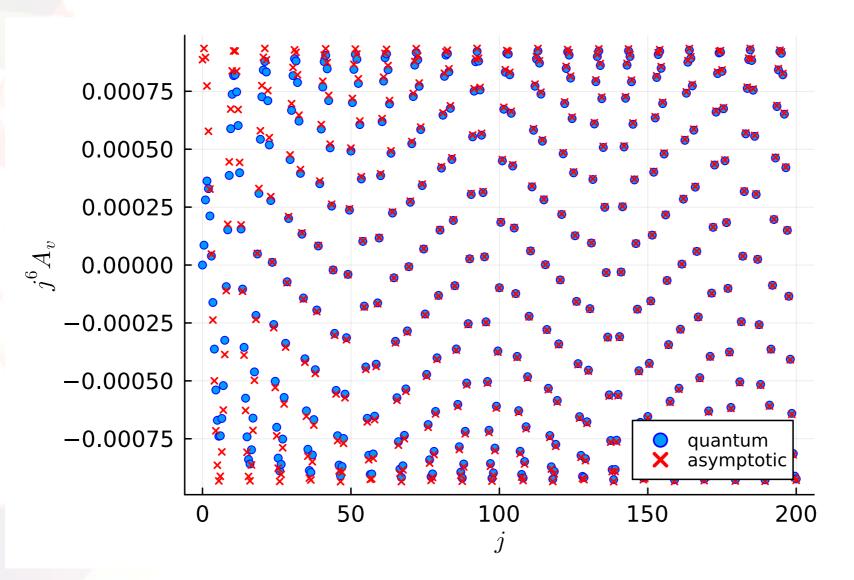
## **First application**

- boundary data  $\{j, \mathbf{n}\}$ 

[Steinhaus, <u>SKA</u>]

#### **Vertex amplitudes**

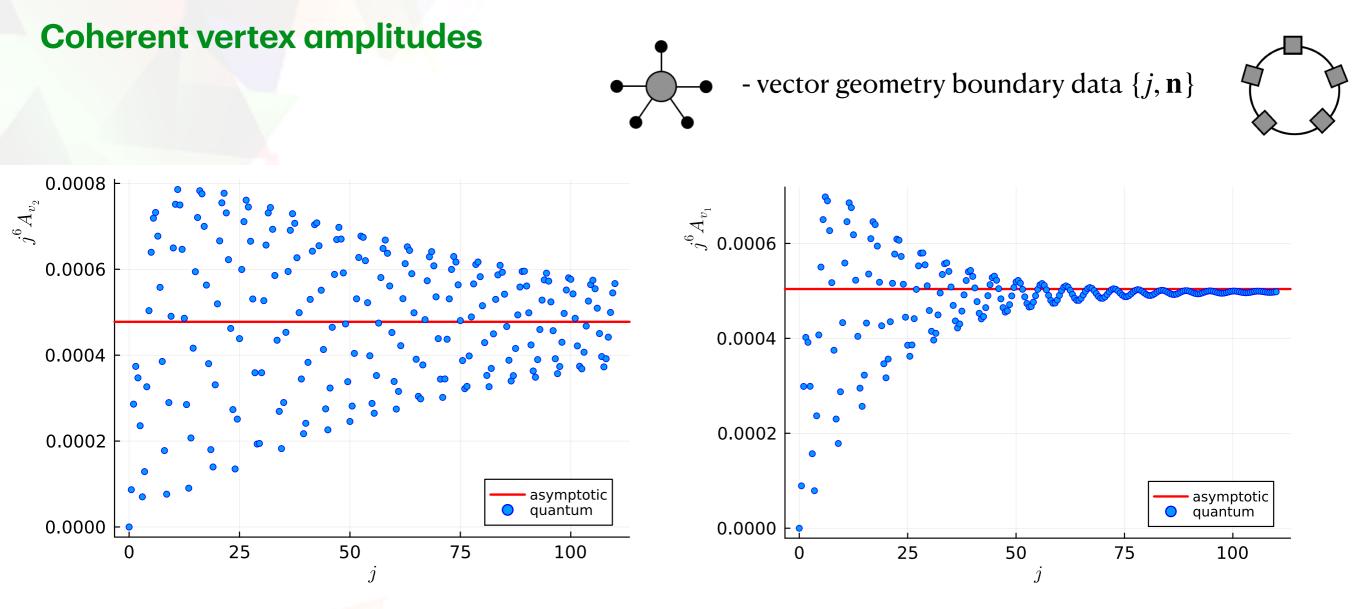
Equilateral vertex



• Can scale up computations !

## **Tensor network algorithm**

## **First application**



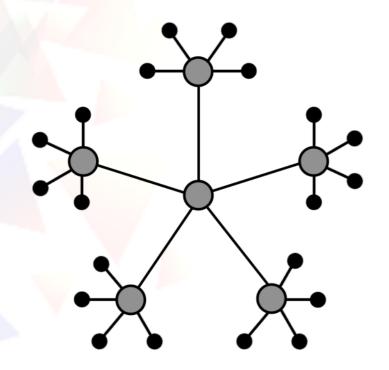
Provide new insights into parametrization of quantum 'twisted' geometries

## More challenges

### **Beyond boundary vertices**

#### **Tensor network algorithm**

Can we always reduce to low-valent tensors or matrix contractions?



can avoid high-valent tensors

High-valent tensors unavoidable

## Summary & Outlook

Good progress toward improving numerical computations of 'quantum space-time'

## Tensor network algorithm julia

Improve scalability, increase accessibility of spin foam quantum gravity

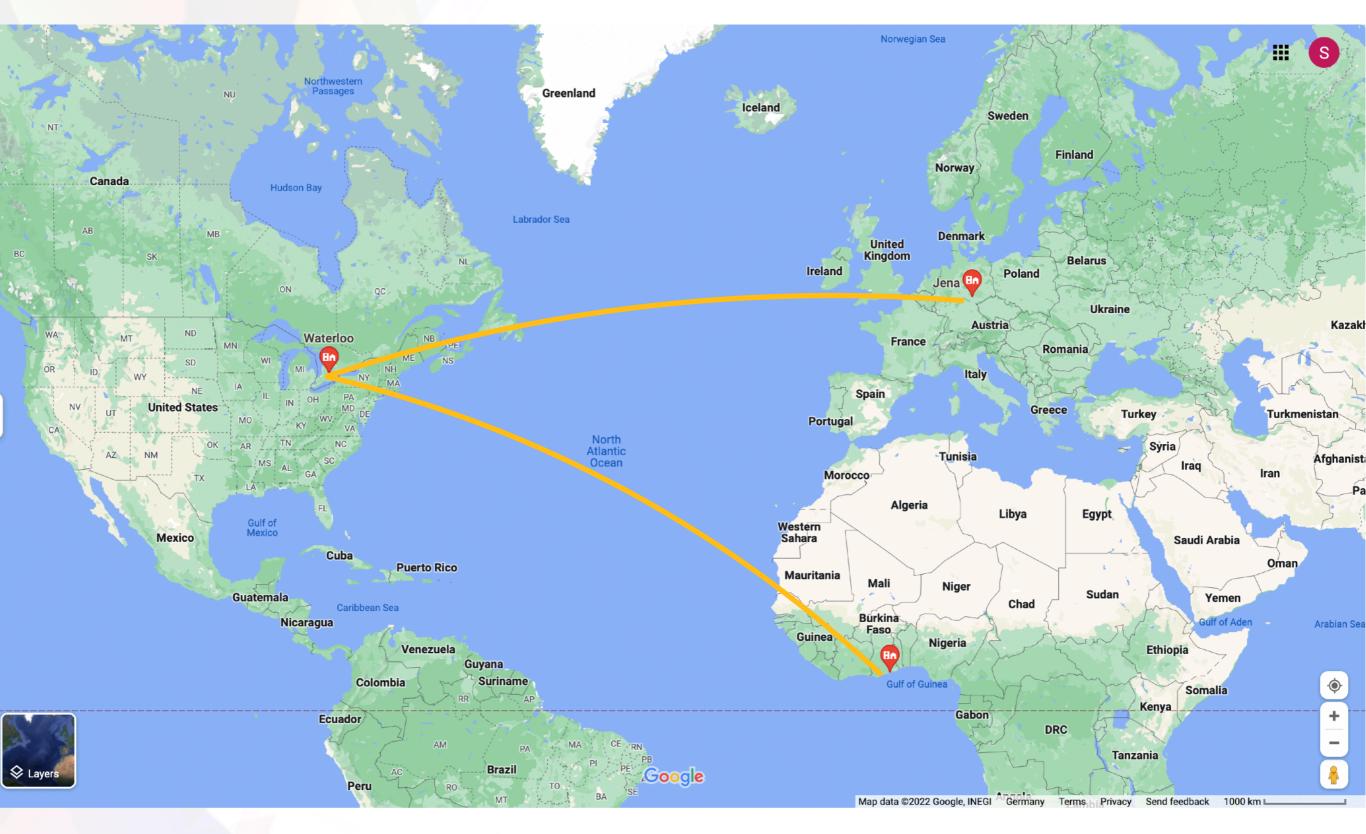
Lesson: tensor-networks tools are powerful for computations using low-valent tensors

### **Outlook:**

- More room for optimization
- Provide guidance to improve analytical results



## **My journey**



21



