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• Models of gravitational collapse

• Shock waves: some background

• Classical dust collapse: simulations

• An effective quantum gravity model: simulations
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Collaborators:

Jarod Kelly, Robert Santacruz, Edward Wilson-Ewing.

PRL 128 (2022) 12, 121301; e-Print:2109.08667

PRD 106 (2022) 2, 024014; e-Print: 2203.04238

... and to appear (with Mehmood Hassan)
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Gravitational collapse in classical gravity

well-studied:

• Null dust: Vaidya and generalizations

• Particle models: x(t), p(t) — Oppenheimer-Snyder, thin shell, and
variations

• Field theory models: Lemaitre-Tolman-Bondi dust, GR + scalar
field, GR + perfect fluid, · · · ; matter fields ϕ(r , t):

ds2 = −f (r , t)dt2 + g(r , t)dr2 + r2dΩ2

and variations.
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scalar field collapse

Choptuik (1993)

• complex behaviour of scalar field dynamics: scaling, discrete
self-similarity

• weak data −→ no black holes; strong data −→ black holes

• critical behaviour at the onset of black hole formation:
M ≈ (A− A∗)

γ , A is a parameter in the initial data.

• infalling data does not become a shock wave

In QG, what happens to the scalar field if the singularity is avoided?
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represents all classical collapse models
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What happens in quantum gravity?

matter infall −→ dynamical horizon formation −→ matter bounce −→
matter outflow −→ ??

• Bounce?

• Remnant: metastable “star” with collapse and bounce pressures
balanced?

• Repeated collapse and bounce?

• Black hole −→ White hole transition?
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A new possibility

Black holes end in a gravitational shock wave

—based on calculations in an effective QG model for dust collapse
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Understanding shocks

• a shock is a propagating discontinuity in a physical field

• observed in many systems: fluids, plasmas, traffic modelling · · ·

• arise as “weak solutions” to PDEs: solutions of integrated version of
PDE

• established numerical method: Godunov algorithm
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Illustration: 2d Burgers’ equation

The “harmonic oscillator” of shock waves:

ut + uux = 0

Shock solution: u(x , t) = f (x − st)

f (z) =

{
uL, z < 0

uR , z > 0
uL > uR

shock speed s found by integrating the eqn:

d

dt

∫ L

−L

dx u(x , t)dx = −
∫ L

−L

dx uu′
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d

dt
[(L+ st)uL + (L− st)uR ] =

1

2

(
u2L − u2R

)
=⇒ s =

(
u2L − u2R

)
/2

uL − uR

• This is a solution of the integrated equation—weak solution
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The same argument applies to the more general conservation equation

ut + f (u)x = 0.

It has shock solutions with speed

s =
f (uL)− f (uR)

uL − uR
=

jump in f

jump in u

–Rankine-Hugoniot condition

Similar equations arises for classical and effective dust collapse
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other solutions

ut + uux = 0

Solution using method of characteristics: let u = u(x(s), t(s)). Then

du

ds
= ut

dt

ds
+ ux

dx

ds
= 0

provided the characteristic equations hold:

dt

ds
= 1,

dx

ds
= u.

−→ the implicit solution for initial data u(x , 0) = f (x) is

u(x , t) = f (x − u(x , t)t)
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L column: solution by method of characteristics (wave breaking)
Top right: crossing of characteristics

R column: shock wave solution (numerical weak solution) (...movie)
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Lessons from Burgers’ eqn

• physically reasonable initial data can evolve to “solutions” that are
not functions: characteristic crossing occurs.

• seek weak solutions: may give shock waves.
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GR + dust in spherical symmetry

dust time + areal gauge −→

ds2 = −dt2 +

(
dr +

B(r , t)

r
dt

)2

+ r2dΩ2

eom : Ḃ + J ′(B, r) = 0, energy density : ρ =
J ′

8πr2

Classical: Jc =
B2

2r

Effective LQG: Jeff =
r3

2
sin2

(
B

r2

)
.

—from an effective Hamiltonian formulation with holonomy corrections.

These are conservation equations like Burgers’
— except for radial dependence in current
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“The same equations have the same solutions”

— Feynman Lectures II.12
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classical movie ...
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Effective collapse: Gaussian initial density

density outward null expansion
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Effective collapse: double Gaussian initial density

density outward null expansion
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Estimating black hole lifetime

In simulations

• check outward null expansion function Θ+ for roots.

• record time at which first root occurs ti

• record time when no roots remain tf

• plot ADM mass M vs T = tf − ti
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Black hole lifetime

TBH ≈ 8π

3
M2

– code available online
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Analytical estimate of black hole lifetime

The effective equation can be solved for a thin shell by taking

ρ =
M

4πr2
δ(r − L(t))

and finding the shock velocity dL(t)/dt using the Rankine-Hugoniot
condition.

This gives an estimate of black hole lifetime:

T = tin + tout

=

∫ Lmin

RS

(
dL

dt

)−1

in

dL+

∫ RS

Lmin

(
dL

dt

)−1

out

dL

≈ 2RS

3
+

2πR2
S

3lP
(1)

Lmin ≈ (l2pRS)
1/3.
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New Penrose diagram
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Summary

• Shock waves can form in classical dust collapse

• Shock waves always form in effective dust collapse

• Dust black holes end in an emerging shock wave

• Black hole lifetime ≈ M2: end before Hawking time M3

Future

A lot to think about: other matter types, other effective equations,
gauges, observables, · · ·

The dust case is easier relative to what we are seeing for the scalar field

25 / 25


