Understanding Shock Waves in Gravitational Collapse

June 27, 2024

- Models of gravitational collapse
- Shock waves: some background
- Classical dust collapse: simulations
- An effective quantum gravity model: simulations

Collaborators:

Jarod Kelly, Robert Santacruz, Edward Wilson-Ewing.

PRL 128 (2022) 12, 121301; e-Print:2109.08667 PRD 106 (2022) 2, 024014; e-Print: 2203.04238 ... and to appear (with Mehmood Hassan)

Gravitational collapse in classical gravity

well-studied:

- Null dust: Vaidya and generalizations
- Particle models: x(t), p(t) Oppenheimer-Snyder, thin shell, and variations
- Field theory models: Lemaitre-Tolman-Bondi dust, GR + scalar field, GR + perfect fluid, ···; matter fields φ(r, t):

$$ds^2 = -f(r,t)dt^2 + g(r,t)dr^2 + r^2 d\Omega^2$$

and variations.

Choptuik (1993)

- complex behaviour of scalar field dynamics: scaling, discrete self-similarity
- weak data \longrightarrow no black holes; strong data \longrightarrow black holes
- critical behaviour at the onset of black hole formation: $M \approx (A - A_*)^{\gamma}$, A is a parameter in the initial data.
- infalling data does not become a shock wave

In QG, what happens to the scalar field if the singularity is avoided?

represents all classical collapse models

What happens in quantum gravity?

matter infall \longrightarrow dynamical horizon formation \longrightarrow matter bounce \longrightarrow matter outflow \longrightarrow $\ref{eq:starter}$

- Bounce?
- Remnant: metastable "star" with collapse and bounce pressures balanced?
- Repeated collapse and bounce?
- Black hole → White hole transition?

A new possibility

Black holes end in a gravitational shock wave

-based on calculations in an effective QG model for dust collapse

Understanding shocks

- a shock is a propagating discontinuity in a physical field
- observed in many systems: fluids, plasmas, traffic modelling · · ·
- arise as "weak solutions" to PDEs: solutions of integrated version of PDE
- established numerical method: Godunov algorithm

Illustration: 2d Burgers' equation

The "harmonic oscillator" of shock waves:

$$u_t + uu_x = 0$$

Shock solution: u(x, t) = f(x - st)

$$f(z) = \begin{cases} u_L, & z < 0 \\ u_R, & z > 0 \end{cases} \qquad u_L > u_R$$

shock speed *s* found by integrating the eqn:

$$\frac{d}{dt}\int_{-L}^{L}dx \ u(x,t)dx = -\int_{-L}^{L}dx \ u(x',t)dx \ u($$

This is a solution of the integrated equation—weak solution

The same argument applies to the more general conservation equation

$$u_t+f(u)_x=0.$$

It has shock solutions with speed

$$s = \frac{f(u_L) - f(u_R)}{u_L - u_R} = \frac{\text{jump in f}}{\text{jump in u}}$$

-Rankine-Hugoniot condition

Similar equations arises for classical and effective dust collapse

other solutions

$$u_t + uu_x = 0$$

Solution using method of characteristics: let u = u(x(s), t(s)). Then

$$\frac{du}{ds} = u_t \frac{dt}{ds} + u_x \frac{dx}{ds} = 0$$

provided the characteristic equations hold:

$$\frac{dt}{ds} = 1, \quad \frac{dx}{ds} = u.$$

 \longrightarrow the implicit solution for initial data u(x,0) = f(x) is

$$u(x,t) = f(x - u(x,t)t)$$

L column: solution by method of characteristics (wave breaking) Top right: crossing of characteristics R column: shock wave solution (numerical weak solution) (...movie)

Lessons from Burgers' eqn

- physically reasonable initial data can evolve to "solutions" that are not functions: characteristic crossing occurs.
- seek weak solutions: may give shock waves.

GR + dust in spherical symmetry

dust time + areal gauge \longrightarrow

$$ds^2 = -dt^2 + \left(dr + rac{B(r,t)}{r} dt
ight)^2 + r^2 d\Omega^2$$

eom : $\dot{B} + J'(B, r) = 0$, energy density : $\rho = \frac{J'}{8\pi r^2}$

-from an effective Hamiltonian formulation with holonomy corrections.

These are conservation equations like Burgers' — except for radial dependence in current "The same equations have the same solutions" — Feynman Lectures II.12 classical movie ...

Effective collapse: Gaussian initial density

19 / 25

Effective collapse: double Gaussian initial density

density

outward null expansion

Estimating black hole lifetime

In simulations

- check outward null expansion function Θ_+ for roots.
- record time at which first root occurs t_i
- record time when no roots remain t_f
- plot ADM mass *M* vs $T = t_f t_i$

Black hole lifetime

$$T_{\rm BH} pprox rac{8\pi}{3} M^2$$

- code available online

Analytical estimate of black hole lifetime

The effective equation can be solved for a thin shell by taking

$$\rho = \frac{M}{4\pi r^2} \delta(r - L(t))$$

and finding the shock velocity dL(t)/dt using the Rankine-Hugoniot condition.

This gives an estimate of black hole lifetime:

$$T = t_{in} + t_{out}$$

$$= \int_{R_S}^{L_{min}} \left(\frac{dL}{dt}\right)_{in}^{-1} dL + \int_{L_{min}}^{R_S} \left(\frac{dL}{dt}\right)_{out}^{-1} dL$$

$$\approx \frac{2R_S}{3} + \frac{2\pi R_S^2}{3I_P}$$
(1)

 $L_{min} \approx (l_p^2 R_S)^{1/3}.$

New Penrose diagram

FIG. 4. Conformal diagram for dust collapse and bounce. Red lines show the outer and inner apparent horizons—the outer horizon becomes and remains null once all in-falling matter has passed through it; the dashed blue line shows a typical ingoing dust trajectory; the solid blue lines show the outgoing shock wave trajectory according to the interior and exterior metrics respectively—these metrics differ due to the shock discontinuity; the shaded portion of the diagram is excised and the two solid blue lines are identified. To an outside observer the outer horizon disappears as the shock wave emerges.

Summary

- Shock waves can form in classical dust collapse
- Shock waves *always* form in effective dust collapse
- Dust black holes end in an emerging shock wave
- Black hole lifetime $\approx M^2$: end before Hawking time M^3

Future

A lot to think about: other matter types, other effective equations, gauges, observables, \cdots

The dust case is easier relative to what we are seeing for the scalar field