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Inflation

We can have some confidence in the story of the evolution of the universe
from the time of electron–positron annihilation to the present, as told in the
previous three chapters. About earlier times, so far we can only speculate. In
the past quarter century these speculations have centered on the idea that
before the period of radiation domination, during which the Robertson–
Walker scale factor a(t) was growing as

√
t, there was an earlier period

of inflation, when the energy density of the universe was dominated by a
slowly varying vacuum energy, and a(t) grew more-or-less exponentially.
The possibility of an early exponential expansion had been noticed by sev-
eral authors,1 but at first it attracted little attention. It was Alan Guth2 who
incited interest in the possibility of inflation by noting what it was good for.

Guth noticed that, in a model of grand unification he was considering
(with Henry Tye), scalar fields could get caught in a local minimum of the
potential, which in his work corresponded to a state with an unbroken grand
unified symmetry. The energy of empty space would then have remained
constant for a while as the universe expanded, which would produce a
constant rate of expansion, meaning that a(t) would have grown exponent-
ially. Eventually this inflation would be stopped by quantum-mechanical
barrier penetration, after which the scalar field would start rolling down the
potential toward a global minimum, corresponding to the present universe.
In itself this would have been a result of no great immediate importance.
But then it occurred to Guth that the existence of an era of inflation would
solve one of the outstanding problems of cosmology, mentioned here in
Section 1.5. It is known as the “flatness problem:” Why was the curvature
of space was so small in the early universe? Guth soon also discovered that
inflation would solve other cosmological puzzles, some of which he had not
even realized were puzzles. These problems along with the flatness problem
will be discussed in Section 4.1.

As Guth and others soon realized, his version of inflation had a fatal
problem, to be described in Section 4.2. Guth’s “old inflation” was soon
replaced with a “new inflation” model, due to Andrei Linde3 and Andreas
Albrecht and Paul Steinhardt.4 The essential element introduced by

1A. A. Starobinsky, JETP Lett. 30, 682 (1979); Phys. Lett. B 91, 99 (1980); D. Kazanas, Astrophys.
J. 241, L59 (1980); K. Sato, Mon. Not. Roy. Astron. Soc. 195, 467 (1981).

2A. Guth, Phys. Rev. D 23, 347 (1981). Guth tells the story of this work in The Inflationary Universe:
The Quest for a New Theory of Cosmic Origins (Helix Books/Addison Wesley, 1997).

3A. D. Linde, Phys. Lett. B 108, 389 (1982); 114, 431 (1982); Phys. Rev. Lett. 48, 335 (1982).
4A. Albrecht and P. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
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The plan of the talk: 

Introduction: a very brief account of the inflationary paradigm for the origin of structure in the CMB
 

Part I: I will present a different perspective based on quantum gravity inputs. The new version of the story 
is compatible with observations in the CMB but conceptually very different. At the very least it shows that 
there are more than one possibility (conceptually speaking)

Part II: The previous discussion opens an un-expected possibility: The big bang (reheating) could have 
been as hot as the Planck scale. With some extra hypothesis (motivated again by quantum gravity) a natural 
candidate of dark matter particle appears as a prediction.

We propose a protocol for direct detection of such dark matter candidate.



The data: structure in the cosmic 
microwave background (CMB)



The standard inflationary theory of primordial inhomogeneities

a constraint on inflationary models rather than a prediction of inflation), inflationary models
natually yield a so-called “scale free” spectrum of density perturbations (see below). This
prediction of a scale-free spectrum has been spectacularly confirmed during the past year by
high precision measurements of the cosmic microwave background [4].

The basic mechanism by which inflationary models give rise to macroscopically important
fluctuations at long wavelengths can be seen by considering the simple model of a free,
massless, minimally coupled scalar field, φ, in a spatially flat background Robertson-Walker
spacetime,

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2]. (1)

If we consider a plane wave mode of coordinate wavevector "k,

φ(t, "x) = φk(t)e
i!k·!x (2)

then φk satisfies
d2φk

dt2
+ 3H

dφk

dt
+

k2

a2
φk = 0, (3)

where H = a−1da/dt is the Hubble constant. This is identical in form to the harmonic oscil-
lator equation with a unit mass, a (variable) spring constant k2/a2, and a (variable) friction
damping coeficient 3H . Consequently, when the (proper) wavelength, a/k, of the mode is
much smaller than the Hubble radius, RH = 1/H , the mode will behave like an ordinary
harmonic oscillator, with negligible damping. On the other hand, when the wavelength is
much larger than the Hubble radius, the mode will behave like an overdamped oscillator; its
“velocity”, dφk/dt, will rapidly decay towards zero and its amplitude will effectively “freeze”.

In the quantum theory of the scalar field φ, each mode φk = (2π)−3/2 ∫ exp(−i"k · "x)φd3x
acts as an independent harmonic oscillator, with Lagrangian

Lk =
a3

2
[|dφk/dt|2 −

k2

a2
|φk|2], (4)

where the factor of a3 arises from proper volume element in the Klein-Gordon Lagrangian
for φ. (Note that φk was defined using the coordinate volume element rather than the proper
volume element in order to obtain this simple form for Lk.) At a fixed time t, the ground
state of the oscillator defined by eq. (4) is a Gaussian wavefunction in φk, with spread given
by

(∆φk)
2 =

1

2a3(k/a)
(5)

(see, e.g., eq. (2.3.34) of [5]). Now, if the proper wavelength of the mode is much smaller than
the Hubble radius, the ground state will evolve adiabatically, and eq. (5) will continue to hold
at later times. At the other extreme, if the proper wavelength of the mode is much larger
than the Hubble radius, the oscillator will be overdamped, and the fluctuation amplitude
∆φk will remain constant with time.

It should be noted that during a “normal” era of evolution of the universe (when P ≥ 0—
or, more generally, P > −ρ/3 where P is the pressure and ρ is the mass density), the Hubble
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… from Wald and Hollands 2002

The fluctuations 
of the scalar field modes 
after horizon crossing are 

scale invariant
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When k/a<H
the friction term wins 

and modes freeze!

The Lagrangian for a single
Fourier mode



-4 -2 2 4

0.2

0.4

0.6

0.8

1.0 0[�k]

Quantum fluctuations are transformed into density fluctuations by 
something like a measurement turning them into classical fluctuations

after some form of collapse of the wave function

The expectation value of the 
energy-momentum tensor is 

homogeneous and isotropic in 
this state.

radius will grow more rapidly than a, so the Hubble radius will tend to “overtake” the
proper wavelength of modes. Thus, φk may evolve from an overdamped oscillator to an
underdamped oscillator, but not vice-versa. On the other hand, during an era of inflation
(when P = −ρ), the Hubble constant is truly constant, whereas a grows exponentially with
t. Thus, the proper wavelength of modes will tend to rapidly overtake the Hubble radius.

The basic mechanism by which inflation produces a spectrum of density perturbations
appropriate to account for the origin of structure in our universe may now be explained.
In inflationary models, the modes relevant to cosmological perturbations are assumed to be
“born” in their ground state at a time when their proper wavelength is much less than the
Hubble radius. These modes initially evolve adiabatically (remaining in their ground state),
so the precise time at which they came into existence is not important. However, during an
era of inflation, their proper wavelength becomes much larger than the Hubble radius, and
their fluctuation amplitude essentially freezes at the value

(∆φk)
2 ∼

1

2a30(k/a0)
, (6)

where a0 is the value of the scale factor at the time the mode “crossed” the Hubble radius,
i.e., at the time when

k/a0 = H0 (7)

where H0 is the Hubble constant during the inflationary era. Now consider these modes
at a later time—but early enough that all of the cosmologically relevant modes still have
wavelength larger than the Hubble radius. Combining eqs. (6) and (7), we see that the
fluctuation spectrum for these modes is given by

(∆φk)
2 ∼

H2
0

k3
, (8)

which corresponds to a “scale free” spectrum5. Note that eq. (8) differs from eq. (5) by a
factor of (a/a0)2, which is enormous for the modes of interest and thereby accounts for how
quantum fluctuations can have macroscopically relevant cosmological effects.

In order for the above initial fluctuation spectrum of φk to produce a corresponding initial
fluctuation spectrum of the density perturbations, it is necessary that the scalar field also
make a large, essentially classical contribution to the stress-energy of the universe. If it does
so, then the cross-terms in the stress-energy tensor of the scalar field between the classical,
homogeneous background field φ0 and the quantum fluctuations of the scalar field will give
rise to cosmologically relevant density perturbations. In standard inflationary models, the
initially large, background, classical energy of the scalar field is provided by potential energy,
with an extremely “flat” potential. The stress-energy associated with this potential provides

5 The normalization of the power spectrum commonly used elsewhere differs from our conventions by
a factor of k−3 as a consequence of the use of the volume element dk/k rather than k2dk in the inverse
Fourier transform. Thus, eq. (8) corresponds to a power spectrum that is independent of k in the alternate
conventions.
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The standard inflationary theory of primordial inhomogeneities



The cosmological Schroedinger cat tension

(the measurement problem in QM)
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The relationship between the scalar field fluctuations and the scalar 
metric fluctuations depends on the details of inflation via the linearised 

Einstein equations

The absence of traces of gravitational waves in the CMB implies (in the context of 
the standard theory of inflation) that the scale H must be much lower than the 

Planck scale, perhaps even too low for inflation to be natural
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Perturbations in the slow-roll regime

To illustrate this, let us consider a model of inflation with large field values (model
of type A), for instance, with a power law potential (8.68). The expressions (8.69)
and (8.235) allow us to establish that

r =
f

2

(
n

n + 2

)
(1 − nS). (8.257)

Inverting (8.70) and (8.69) for ε, we obtain

r = f
n

4(N + n/4)
, 1 − nS =

n + 2

2(N + n/4)
. (8.258)

For a given model, for example, n = 4, the observable quantities r and nS − 1 depend
on the number of e-folds. Figure 8.11 illustrates the position of one of these models in
the (nS − 1, r)-plane. As N is increased the model gets closer and closer to the point
(nS −1, r) = (0, 0). This figure also summarizes the constraints on the two parameters
obtained from WMAP data.

r

N = 50  60

m
m

N

HZ

Chaotic inflation

-0.04 -0.02-0.06 0.0 0.02
0.0

0.1

0.2

0.3

0.4

flation

Sn -1

Fig. 8.11 Constraints on single-field chaotic inflationary models with potentials of the form
ϕn with n = 2 (dashed), n = 4 (solid) and on Nflation with ϕ2 potential (dotted). HZ is

the prediction for a strictly scale invariant power spectrum. The predictions for N = 50 and
N = 60 e-folds have been plotted. The ϕ4 models are excluded at 95% CL. From Ref. [29].

Given observational constraints in this plane, the viability of a model depends on
the number of e-folds. The previous example shows that predictions from a model of
chaotic inflation depend crucially on N . The latest analysis of WMAP [29] concluded
that a single-field model with V = λϕ4/4 is far from the 95% confidence level (CL)
region for both N = 50 and N = 60. A massive free-field model is out of the 68% CL
region for N = 50 and at the boundary of this region for N = 60 while being inside
the 95% CL region. For a power-law inflation model, R = 1/p and 1 − nS = 2/p so
that p < 60 is excluded at more than 99% CL.

The absence of traces of gravitational waves in the CMB implies (in the context of 
the standard theory of inflation) that the scale H must be much lower than the 

Planck scale, perhaps even too low for inflation to be natural



 An alternative scenario: inhomogeneities would be born 
from the interaction of matter with the fundamental 

granularity.
h |Tab(t, ~x)| i 6= h |Tab(t, ~x+ ~r)| i

The scenario avoids the cosmological 
Schroedinger cat tension!

PART I:





Text

Discreteness and Lorentz invariance

Discreteness is more apparent  
in curved regions than in flat ones.
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Now we estimate the amount of energy-momentum violation experienced due to the transfer of energy from the
continuum degrees of freedom of massive matter to the underlying microscopic discrete substratum of quantum
spacetime. Recall that according to our rationale only ⇢m contributes, thus simple dimensional analysis tell us that
the leading contribution should be

J = ↵`pR
2
c dt

⇡ ↵`p


8⇡G

c2
(⇢� 3P )

�2
c dt, (5)

where ↵ is a dimensionless phenomenological constant of order one (here we are neglecting higher order corrections
with powers of `2p or higher in front), and we used (4).

From (3) the contribution to the e↵ective cosmological constant is given by

⇤ = ⇤⇤ + ↵`p

t0Z

t⇤


8⇡G

c2
⇢m

�2
cdt, (6)

where t⇤ is the time where the e↵ects start and t0 denotes today. Following our rationale we expect t⇤ to be given
by the time when massive matter first appears in our universe; according to the standard model (and some of its
extensions) this corresponds to the electroweak unification time3.

From Friedmann equations (H(a)/H0)2 = ⌦r
0(a0/a)

4 + ⌦m
0 (a0/a)

3 + ⇤e↵(a)c2/3H2
0—where H(a) = ȧ/a and ⌦r

0,
⌦m

0 are the matter and radiation dimensionless density parameters today respectively—and using the fact that t⇤ is
well inside the radiation dominated we can accurately estimate (6) to

⇤� ⇤⇤ =
9

4

↵`pH
3
0

c3

(⌦m
0 )2p
⌦r

0

z
4
⇤

| {z }
dark matter ⇡ 6↵10�54m�2

+
15

8

↵`pH
3
0

c3

↵Q⌦m
p
⌦r

⇡2


md

c2kT0

�2
z
3
⇤

| {z }
cross term ⇡ 9↵Q10�53m�2

+
225

2048

↵`pH
3
0

c3

↵Q
2(⌦0

r)
3/2

⇡4


md

c2kT0

�4
z⇤

2

| {z }
light quarks ⇡ ↵Q210�52m�2

(7)

where z⇤ is the redshift parameter corresponding to the starting time t⇤. Using the observational values [13] and
z⇤ ⇡ 7 1014 we get

⇤� ⇤⇤ ⇡ ↵ 0.24 10�52
m

�2 (8)

which is in remarkably close to the observed value ⇤obs ⇡ 1.19 10�52
m

�2.
The previous result is an order of magnitude estimate of the model (5). In a more refined calculation the dynamical

details of the electro-weak transition would probably need to be considered: the transition cannot be sharp and this
should be taken into account when calculating the contributions to ⇤. The value of ↵ is also uncertain in that it
depends on details that are not considered in our phenomenological model. Such details can easily make ↵ move by
one or even two orders of magnitude (e.g. number of species involved, other numerical factors, etc.). Here we have
also assumed that all of ⇢m is created at the electro-weak transition; this implicitly assumes that the dark matter also
is produced at around that time or later. Again, a modification of this assumption would lead to a potential change of
only a few orders of magnitude in our estimates. Under these circumstances our very simple and minimalistic model
is remarkably accurate.

We believe that our proposal has important implications both at the theoretical as well as at the empirical level. At
the theoretical level it provides a novel view that could reconcile Planckian discreteness and Lorentz invariance and
gives possibly valuable insights guiding the quest for a theory of quantum gravity. At the empirical level our analysis
opens a new path for searches of new physical manifestations of the gravitation/quantum interface.

Concerning the later we note that one might use (5) to estimate the amount of energy loss in local experiments;
for short times (neglecting the cosmological expansion) one finds ⇢̇m ⇡ �↵(⇢m/⇢water)210�49

g/cm
3
s where ⇢water is

the density of liquid water on earth. This is equivalent to the lost of the mass of one proton per year in 1015 litters
of water. Even when at water density this numbers seem tiny it is possible that these e↵ects could have independent
observational consequences in high density situations due to the scaling with ⇢

2
m (yet even for neutron star density

the numbers seem too small to have observational consequences).

3 The mass of the Higgs before the electroweak unification does not enter in our analysis because in the standard picture, at temperatures
above the electroweak scale the Higgs field is assumed to lie unexcited at the bottom of the e↵ective potential. This condition is valid for
all earlier times because in the corresponding regimes the e↵ective mass of the Higgs changes at the same rate as does the temperature
[12].

Discreteness should 
manifest itself in regions of 

non trivial curvature
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Discreteness and Lorentz invariance

Quantum spacetime cannot be interpreted in analogy 
with a lattice choosing a preferred rest frame.  

Lorentz violation at the Planck scale is not 
suppressed by the Planck scale. It percolates via 
radiative corrections to large violations at low 

energies.

Collins, AP, Sudarsky, Urrutia, Vusetich;  
Phys. Rev. Letters. 93 (2004).



Discreteness manifest itself via interactions with the matter that probes it.
From  this  perspective,  the  discrete  aspects  of  quantum  spacetime 
would arise primarily via interactions of the degrees of freedom of 
gravity and matter which by themselves select a preferential rest frame 
at the fundamental level; a setting where the Planck length lp would 
acquire an invariant sense. In other words, and within the relational 
approach we are advocating, it is clear that in order to be directly 
sensitive to the discreteness scale lp, the probing degrees of freedom 
must themselves carry their intrinsic scale. These ideas would seem to 
rule  out  massless  (scale  invariant)  degrees  of  freedom  as  leading 
probes  of  discreteness  simply  because  massless  particles  cannot  be 
associated with a single local preferential rest frame. 

Meaningful geometric observables must be Dirac 
observables.

Dirac  observables  are  hard  to  construct  explicitly  but  it  seems  clear  that,  when  it  comes  to 
geometry, matter degrees of freedom need to be invoked in order to achieve gauge invariance. 
Relational geometric notions are the key for reconciling discreteness and Lorentz invariance.

Scalar curvature is the natural “order parameter”

R = 8⇡GT = 8⇡G(⇢� 3P )

This notion encodes in a MEAN FIELD manner the interaction of the 
matter degrees of freedom with fundamental discreteness  
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To probe Planck scale 
we need a breaking of 

scale invariance  
(need a ruler!)
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Scale-invariance-breaking degrees 
of freedom are those where the 

phenomenology of granularity should 
primarily manifest. 



granularity of the microscopic theory
from which geometry & matter

emerge

Emerging semiclassical scalar field fluctuations 
at lower but close to fundamental scale

The basic idea in a picture

��

13]. The matter content in the standard model of particle physics suggests that at high

energies only scalar fields like the Higgs can break scale invariance. Thus, the quantum

state describing the scalar field perturbations cannot be close to anything like a vacuum

state near the fundamental scale, | i 6= |0i, but rather given by a state with non trivial

inhomogeneities induced by the grainy structure of quantum geometry. This is the key

departure of our proposal from the standard inflationary paradigm.

A precise description of the fundamental mechanism for the generation of the inhomo-

geneities would require understanding of the quantum gravity dynamics at the Planck scale.

Here, we take a phenomenological approach based on the assumption (confirmed by the

study of certain simplified models [14]) that a mean-field semiclassical approximation can

become a good approximation close to the fundamental scale. The perspective we adopt is

similar to the one taken in the Ginsburg-Landau phenomenological theory of superconduc-

tivity, where the dynamics of an emergent collective variable is modelled according to very

general principles. The emergent collective variable of interest here is the expectation value

of the scalar field perturbations (which we assume is the single scale-invariance breaking

degree of freedom; the Higgs or another scalar). These perturbations are created from the

interaction with a quantum geometry whose grainy structure breaks the symmetries of the

FLRW background. Concretely, the mean-field-variables of interest are given by the Fourier

modes of the scalar perturbations

��k ⌘ h |d��k| i 6= 0, k  mpa, (3)

which, in the absence of interactions, follow the standard semiclassical evolution equations

��̈k + 3H��̇k +
k
2

a2
��k = 0, (4)

where H is the (approximately) constant Hubble rate 3. For modes with k
2
< a

2
H

2 the

friction term dominates and the solutions freeze out exponentially fast at horizon crossing.

of a field with mass m where excitations define a particular proper rest frame where, not only the energy

scale m has an invariant meaning as the rest mass of the excitation, but also the Planck scale acquires

its invariant meaning in relation to that dynamical frame. In turn photons, an emblematic low energy

scale-invariant degree of freedom, cannot measure (interact with) discreteness as they cannot select any

particular rest frame with respect to which a fundamental scale would be meaningful: it simply does not

work as a good rod and clock relational excitation to interact with the microscopic dynamical granularity.
3 For simplicity we neglect here possible self interaction terms by taking d

2
V (�0)/d�2 ⌧ H

2, in addition,

metric perturbations that generally appear in this equation are absent during the De Sitter phase as a

consequence of the Weinberg theorem [15, 16]. We will do the same in equation (14).
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We assume that the quantum state describing the scalar field perturbations | i 6= |0i
and is rather given by a semiclassical state from which we define the (no non-trivial) mean
field variable
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to the actual field perturbations via
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The mechanism of generation of inhomogeneities from the Planckian discreteness will be
described explicitly below. One of its characteristic features is that, in contrast with the
standard paradigm, the expectation value of the energy momentum tensor in the quantum
state of the scalar field breaks homogeneity at the primordial level. In fact due to (1.3) one
has that
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after created by the interaction with the granularity at the Planck scale, i.e. for k < amp.
The modes with k ⇡ amp are assumed to be exited by a Brownian interaction which we can
model via the addition of a source term according to
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where ⇠~k(t � t
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k
) is a stochastic source peaked at zero with t
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k
the horizon crossing (HC)

time—idealizing the concept that the source of inhomogeneities is the granular structure that
interacts with the scalar field at the fixed physical scale H ⇡ mp at time t

HC

k
corresponding

to the instant when the wavelength of the mode is Planckian, i.e., when k = a(t
HC

k
)mp.

1.1.1 Initial excitation of field modes

For illustration consider the simple situation case where
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(t� t
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k
) = �~k

�(t� t
HC

k
) (1.9)

where the stochasticity is shifted to the variable �~k
. Integrating the previous equation in

time before and after the interaction time t
HC

k
for an infinitesimally small duration we get

���̇~k
+ 3H���~k

= �~k
, (1.10)

where ���̇~k and ���~k encode the initial kick on the field degrees of freedom. Here we need to
know how the interaction ‘kicks’ the field in the sense of how the perturbation is distributed
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The generation process is modelled
via an homogeneous and isotropic 

stochastic process

Modelling the generation of inhomogeneities via a 
Brownian diffusion:

As mentioned, we assume that the horizon scale H ⇡ mp: the primordial vacuum energy

starts at the natural Planck value. In an approach to quantum gravity where physics is dis-

crete at the fundamental scale no spacetime symmetries can be preserved microscopically:

the state of scalar perturbations will emerge asymmetric from the Planck scale. Perturba-

tions are born at the Planck scale k = amp and, once stretched by the de Sitter expansion,

decouple from the discrete microscopic structure that generated them to propagate freely ac-

cording to the mean field evolution equations (4) which freezes the inhomogeneities produced

once the modes expand to wavelengths longer than the Planck scale.

In the absence of a precise microscopic theoretical understanding, we resort to statistical

methods akin to Einstein’s stochastic depiction of Brownian motion. Thus, we assume that

the scalar field is excited in a random fashion and we model the situation by a stochastic

process whose ensemble averages are denoted with the double-brakets hhii (not to be confused

with quantum mechanical state-averages). The first moments of the stochastic process is

taken as vanishing, namely

hh��kii = 0. (5)

We assume that the stochastic process respects the symmetries of the FLRW background,

which implies that the second moments must be given by

hh��k��qii = P��(k) �(~k + ~q), (6)

where P��(k) is the so-called power spectrum of the scalar perturbations. Fourier transform-

ing the previous equation it follows that [17, 18]
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a(t)mpZ

µ

dk
3
P��(k), (7)

where the lower limit of integration µ is an infrared cuto↵—the size of the universe

patch where the background metric (1) is a good approximation—while the upper limit

at kmax = a(t)mp implies that perturbations are born when their physical wavelength cor-

responds to the Planck scale. This represents the process of creation of inhomogeneities

via the interaction with the microscopic granular structure at the fundamental scale. As

soon as created the modes cross the Hubble horizon and get frozen, thus the relevant time

dependence on the generation of field perturbations is encoded in the time dependence of

the upper integration limit of the previous equation.
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Energy cost of the a Brownian diffusion:

This time dependence requires energy to flow from the Planckian microscopic substratum

into the scalar field perturbations: as the Planckian granularity is continuously exciting the

quantum state of the scalar field with inhomogeneities (3) the energy (injected into the

scalar field perturbations) is encoded in a non trivial energy momentum tensor violating

FLRW symmetries, i.e., equation (2) is violated. One can estimate the energy cost via the

ensemble average of the energy momentum tensor which takes the perfect fluid form

hhTab[��]ii = hhra��rb��ii �
gab

2
hhr↵��r↵

��ii ⇡ hh(~r��)2ii
2a2| {z }
⌘⇢(2)

uaub �
hh(~r��)2ii

6a2| {z }
⌘P (2)

hab, (8)

due to the homogeneity and isotropy of the stochastic generation process 4 . Energy balance

is understood via the work per unit time necessary to produce the inhomogeneities dW

dt
=

�ra hhTabii ub which leads to the left hand side of a continuity equation

dW

dt
[P��] ⌘ d

dt
⇢
(2) + 3H

�
⇢
(2) + P

(2)
�
=

d

dt
⇢
(2) + 2H⇢

(2) = J, (10)

where in the last equality we have used the equation of state for the perturbations that

follow from (8), and we introduced the current J , on the right hand side, representing the

injection of energy associated with the production mechanism of inhomogeneities.

We assume that mode excitations in the scalar field are created randomly when the

physical wave length of the mode coincides with the Planck scale, namely when k = amp.

This assumption relates ⇢(2) and the power spectrum (6) according to

⇢
(2)[P��] ⌘

1

2a2
hh(~r��)2ii ⇡ 1

2⇡2

a(t)mpZ

µ

dkk
2

✓
k
2

2a2

◆
P��(k), (11)

where the upper limit in the integration realizes the idea that modes are created at the

Planck scale. The creation of the modes by the Brownian interaction with the granularity

costs energy encoded in the current J in (10). As the only energy scale present during

the inflationary phase is H, dimensional analysis implies that J = �H
5, where � is a

4 We first focus on the quantity hhra��rb��ii, which, from isotropy of the stochastic process, can be written

as:

hhra��rb��ii = hh��̇2iiuaub +
1

3a2
hh~r�� · ~r��iihab ⇡

1

3a2
hh~r�� · ~r��iihab, (9)

where hab = gab + uaub is the space metric and u
a = @

a
t is the 4-velocity of the comoving frame and we

have neglected the hh��̇2ii ⌧ hh~r�� · ~r��ii. With the previous result hhTab[��]ii becomes as in (8).
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costs energy encoded in the current J in (10). As the only energy scale present during

the inflationary phase is H, dimensional analysis implies that J = �H
5, where � is a

dimensionless parameter 5. Using that dt = da/ȧ = Hda/a we can rewrite (6) as

d

da
W

pert.[P��(k)] ⌘
d hh⇢(2)ii

da
+

2

a
hh⇢(2)ii = �

H
4

a
. (12)

The previous energy-balance equation—the analog of Einstein’s detail balance equations in

the context of Brownian motion—uniquely determine the power spectrum P��(k) as follows.

First consider the term d hh⇢(2)ii/da in the previous equation in view of (11). There are

two contributions: a term coming from the derivative with respect to a on the integration

limit (which gives H times the integrand evaluated at k = aH), and the integration of

the a-derivative of the integrand. It turns out that the second contribution cancels exactly

with the term 2
a
hh⇢(2)ii in equation (12). The reason is that once created we assume that

the fluctuations evolve according the semiclassical scalar field equations (4) that imply that

energy is conserved. Thus, equation (12) reduces to:

Hk
2

✓
k
2

2a2

◆
P��(k)

����
k=aH

=
�H

4

a
(13)

Whose solution is the scale invariant spectrum P��(k) = 2�H2
/k

3. The power spectrum of

scalar perturbations can be translated into the (gauge invariant) power spectrum curvature

perturbations observed in the CMB, where small deviations of scale invariance (as the one

observed [1]) are associated to details of the evolution of the Hubble rate during inflation

(the analog of slow-roll parameters). Such more detailed analysis restricts dimensionless

parameter � < 10�10 [19].

As photons, gravitons are not suitable scale breaking degrees of freedom that could di-

rectly interact with the fundamental discreteness. However, the production of inhomo-

geneities via the interaction of the scalar matter field with the granularity at horizon crossing

is a time dependent process that should subsequently lead to the production of gravitational

waves. In the semiclassical treatment the metric perturbations are sourced by the quantum

expectation values of the energy-momentum tensor. At first-order, the tensor perturbations

of the metric h
(1)
ij
—i.e. the graviational waves (GW)—do not contain matter sources, so

5 It appears natural to associate � with an order parameter of the violation of scale invariance. For instance

� ⇡ m/mp for a massive field with mass m. When the present scenario is applied to the Higgs scalar this

identification leads to the correct magnitude for the power spectrum of scalar perturbations [19].
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The power spectrum of scalar perturbations can be translated into the (gauge invariant)

power spectrum curvature perturbations observed in the CMB, where small deviations of

scale invariance (as the one observed [1]) are associated to details of the evolution of the Hub-

ble rate during inflation (the analog of slow-roll parameters). Such more detailed analysis

restricts dimensionless parameter � < 10�10 [19].

As photons, gravitons are not suitable scale breaking degrees of freedom that could di-

rectly interact with the fundamental discreteness. However, the production of inhomo-

geneities via the interaction of the scalar matter field with the granularity at horizon crossing

is a time dependent process that should subsequently lead to the production of gravitational

waves. In the semiclassical treatment the metric perturbations are sourced by the quantum

5 It appears natural to associate � with an order parameter of the violation of scale invariance. For instance

� ⇡ m/mp for a massive field with mass m. When the present scenario is applied to the Higgs scalar this

identification leads to the correct magnitude for the power spectrum of scalar perturbations [19].
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Gravitational waves are suppressed

expectation values of the energy-momentum tensor. At first-order, the tensor perturbations

of the metric h
(1)
ij
—i.e. the graviational waves (GW)—do not contain matter sources, so

h
(1)
ij

= 0. However, the semiclassical Einstein’s equations at second order yield the following

equation for the GW,
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where {...}TT denotes the transverse and traceless part of {...} 6. The previous equation

implies that the spectrum of the primordial GW quadratic in the matter perturbations. A

precise analysis shows [20] that the tensor power spectrum is scale invariant with

Ph(k) ' �
2 H
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M
4
P
k3

.

The quadratic dependence on � suggests the strong suppression we evoke above. A precise

calculation of the tensor-to-scalar ratio r requires depends on details of the deviations from

De Sitter. Nevertheless, detail analysis [20] shows that r < 10�10.

After the inflationary phase, the e↵ective vacuum energy of the order of the Planck density

that was driving it decays via interactions with matter degrees of freedom reheating the

universe up to around the Planck temperature. Such a hot big-bang will produce via thermal

fluctuations Planckian mass primordial black holes (PBH). There are reasons to expect that

discreteness will have a dramatic e↵ect in the physical properties of such elementary PBHs

and that, contrary to the semiclassical expectation that they would evaporate via Hawking

radiation (an expectation only justified for large black holes in Planck unites), black holes

of Planckian mass could be stable and interact only gravitationally 7. If so their abundance

can be easily estimated and the result is striking as it corresponds, in order of magnitude, to

the amount needed to explain the dark-matter density today. As we will see in more detail

below, the only hypothesis that goes into this estimate is that Planck mass stable particles

are part of the spectrum of quantum gravity and that they interact only gravitationally. In

6 As explained in footnote 3, first order metric perturbations can be neglected during the De Sitter phase.
7 One has to keep in mind that at the Planck scale the very notion of smooth geometry is expected to be

lost and that the particules postulated here might have properties very di↵erent from the macroscopic BH

solutions which Hawking radiate. A Planck mass particle is most natural from the perspective of quantum

gravity, it could be stable due to quantum dynamical bouncing [21] or by being e↵ectively extremal via

quantum gravity e↵ects (see [22, 23] and the very general family of models analysed in [24]) or if with

spin of the order of ~. This last conservative possibility is attractive as such particles would be Fermions.
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No restrictions from lack of observation of GW
on the scale H!

Primordial gravitational waves from Planckian discreteness 
G. Bengochea, G. Leon, AP (in preparation)



An alternative mechanism for the production of a scale invariant power spectrum of 
primordial inhomogeneities in a scalar field with a very small 

scalar-to-tensor ratio (as required from observations)

h |Tab(t, ~x)| i 6= h |Tab(t, ~x+ ~r)| i

There is no quantum to classical transition
and reheating can have a temperature close to the Planck scale

Perturbations in the slow-roll regime

To illustrate this, let us consider a model of inflation with large field values (model
of type A), for instance, with a power law potential (8.68). The expressions (8.69)
and (8.235) allow us to establish that

r =
f

2

(
n

n + 2

)
(1 − nS). (8.257)

Inverting (8.70) and (8.69) for ε, we obtain

r = f
n

4(N + n/4)
, 1 − nS =

n + 2

2(N + n/4)
. (8.258)

For a given model, for example, n = 4, the observable quantities r and nS − 1 depend
on the number of e-folds. Figure 8.11 illustrates the position of one of these models in
the (nS − 1, r)-plane. As N is increased the model gets closer and closer to the point
(nS −1, r) = (0, 0). This figure also summarizes the constraints on the two parameters
obtained from WMAP data.
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Fig. 8.11 Constraints on single-field chaotic inflationary models with potentials of the form
ϕn with n = 2 (dashed), n = 4 (solid) and on Nflation with ϕ2 potential (dotted). HZ is

the prediction for a strictly scale invariant power spectrum. The predictions for N = 50 and
N = 60 e-folds have been plotted. The ϕ4 models are excluded at 95% CL. From Ref. [29].

Given observational constraints in this plane, the viability of a model depends on
the number of e-folds. The previous example shows that predictions from a model of
chaotic inflation depend crucially on N . The latest analysis of WMAP [29] concluded
that a single-field model with V = λϕ4/4 is far from the 95% confidence level (CL)
region for both N = 50 and N = 60. A massive free-field model is out of the 68% CL
region for N = 50 and at the boundary of this region for N = 60 while being inside
the 95% CL region. For a power-law inflation model, R = 1/p and 1 − nS = 2/p so
that p < 60 is excluded at more than 99% CL.



 The gravitational miracle: a natural dark matter
candidate follows from the assumption that

H can be close to the Planck scale.

Dark matter as stable Planckian primordial black holes and 
how to detect them

PART II:



Particle physics dark matter candidates

WIMPS: particles that arise naturally if supersymmetry exists.
Their abundance would be just about the right one in the 
context of cosmology (the WIMP-miracle). 

However, all searches have led to negative results and 
consensus is growing in thinking that this option is being ruled 
out by observations.

AXION field: expected to exist on theoretical grounds as it 
would provide the means to resolve the so-called strong CP 
problem. Neutrons have no (so far undetected) electric dipole 
moment (the theta parameter of QCD is very small).

Under active search observationally.



A quantum gravity dark matter candidate
Planck mass particle interacting gravitationally only: such would be 
the darkest of possibilities. It is natural to expect that such a particle 
would be part of the spectrum of physics emerging from quantum 
gravity.

As a mental image we could think of them as Planckian black holes. 

Such tiny BHs are usually ruled out as DM candidates because they 
would be highly unstable due to Hawking radiation. BUT Hawking 
calculation is only valid for macroscopic BHs.

Arguments and models in loop quantum gravity suggest that black holes 
stop Hawking radiating close to the Planck scale (they become 
effectively extremal due to quantum effects).

And most strikingly, as I argue now, their abundance would be just right 
if the big bang is hot enough: the gravitational miracle! 



analogy to a similar coincidence, called the WIMP miracle in the weakly interacting sector of

supersymmetric extensions of the standard model, we term this coincidence the gravitational

miracle [19, 25]. As these particle only interact gravitationally, the form of dark matter that

follows from these assumptions—requiring a minimal amount of new physics—would be the

hardest to detect via direct observation. There are, however, some experimental protocols

suggesting that this could be possible in the near future [26–28].

Let us briefly review such gravitational miracle ignoring factors of order one (like factors of

⇡, ⇠(3), etc) as they do not change the estimates and considerable simplify the presentation.

Particles decouple from thermal equilibrium when their interaction rate � drops below the

Hubble rate H, namely when [17]

� ⌘ n�v < H, (15)

where n is the particle number density, � its cross section of interaction, and v the speed

with respect to the rest frame of the cosmological fluid that is assumed to be in thermal

equilibrium. The Hubble rate can be estimated from the Friedmann equation using that the

energy density ⇢ / gsT
4, with gs the number of species involved, namely
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T
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. (16)
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4
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(17)

from which it follows that the decoupling temperature—below which (15) is satisfied 8—is

TD ⇡ mpp
gs
(mp/mpbh)

2. The abundance fraction of Planckian BHs at decoupling relative to

the total density is given by the corresponding Gibbs factor, namely
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To predict how much dark matter of this type would remain around today we use that for

T  TD these BHs behave like a pressure-less fluid decaying as 1/a3 or equivalently as T 3.

This implies that the density of DM goes like

⇢DM(T ) = ⇢DM(TD)
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. (19)

8 A posteriori, TD turns out to be compatible with non relativistic PBHs (contradicting v ⇡ 1). However,

a careful treatment shows that the central claim, that follows, remains correct in order of magnitude.
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The gravitational miracle

Dark matter density today is about 10�120
m

4
p
. Using that T 3

today/T
3 ⇡ 10�95 and assuming

for concretenes gs ⇡ 100 (this would be correct if the SM holds all the way to the Planck

scale) one gets mpbh ⇡ mp which realizes the miracle we evoke. The dependence on gs is

weak given the uncertainties in the matter sector beyond the standard model 9.

In conclusion, discreteness at the Planck scale implies that at Planckian curvatures the

symmetries of the macroscopic universe we observe cannot be maintained. If symmetries

are fundamentally broken and if a process of exponential expansion is at play, then the

stochastic fluctuations of the fundamental quantum gravity scale induces inhomogeneities

in the matter distribution that evolve into a scale invariant spectrum of perturbations as

observed in the CMB. In such a paradigm the origin of structure is sourced in the preexistent

structure of quantum geometry and not in vacuum fluctuations of trans-Planckian modes.

Due to the large number of microscopic degrees of freedom involved in the generation of

the scalar inhomogeneities, a gaussian primordial semiclassical spectrum of perturbations

is expected and standard arguments of the generation of non-gaussianities do not apply.

As degrees of freedom violating scale invariance are primarily sensitive to the fundamental

scale, gravitational waves are produced at a next to leading order in perturbation theory

and are hence severely suppressed. This invalidates the standard argument against a Planck

scale inflationary scenario based on the negative observation of B modes in the CMB [2].

The initially Planckian energy density of the universe—the most natural scale from the

quantum gravity perspective—decays during a reheating phase that produces a hot big

bang of a temperature near the Planck temperature. This leads to the thermal production

of Planckian primordial BHs which, if stable, would produce the correct order of magnitude

of dark matter. The view we propose in this essay is certainly in great contrast with the

standard one. One should however keep in mind that, in spite of its long history, there is

a large degree of speculation in the standard account of inflation as well. The value of the

perspective opened by this essay is, in our view, the possibility of looking at the observational

facts from a di↵erent angle. This could show useful in making progress in understanding

the mysterious features of present cosmology—ranging from the origin of structure, to the

fundamental nature of dark matter, and dark energy—uncovering an unforeseen window

9 As gs ranges from 100 to 2000, the mass mpbh ranges from 1.8 mp to 1.1 mp! While TD ranges from

6 ⇥ 10�3
mp ⇡ 6 TGUT to 10�2

mp, i.e. scales not extraordinarily higher than usual precluding possible

conflict with the negative evidence of the presence topological defects in cosmology.

10

v

� ⇡
m2

pbh

m4
p

. mp
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In spite or the large astronomical evidence for its existence, the nature of dark matter remains
enigmatic. Particles that interact only, or almost only, gravitationally, in particular with masses
around the Planck mass—the fundamental scale in quantum gravity, are intriguing candidates. Here
we show that there is a theoretical possibility to directly detect such particles using highly sensitive
gravity-mediated quantum phase shifts. In particular, we consider a protocol utilizing Josephson
junctions.

Planck mass particles that interact only or almost only

gravitationally are intriguing dark matter candidates for

several reasons. The Planck scale is the fundamental

scale in quantum gravity and it is plausible to expect

stable or quasi-stable objects at this scale as part of the

spectrum. There are arguments indicating that quantum

gravity may stabilize Planck-mass black hole remnants at

the end of the evaporation [3]. Hawking radiation theory

predicts small black holes to radiate intensely, but the

Planck scale is outside the domain of validity of Hawk-

ing’s theory, which does not take quantum gravity phe-

nomena into account [6]. Stable or semi-stable Planck

mass objects could therefore be a consequence of quan-

tum gravity. Notice that this is a dark matter candidate

that does not require exotic assumptions of new unknown

physics beyond the standard model, general relativity,

and quantum theory. Furthermore, the strength of the

interaction of such particles, combined with the assump-

tion of a su�ciently hot big bang, leads to a density of

these objects at decoupling whose order of magnitude is

compatible with the present dark matter density [4, 5].

Here we observe that recent developments in the area

of table-top experiments involving gravity and quantum

phenomena (we follow especially [8], see for instance [9]

for up do date references) open the theoretical possibility

of direct detection of purely-gravitationally-interacting

dark matter particles. We first consider an idealised de-

tector where the center of detector mass is set in a su-

perposition of locations. Then discuss a more concrete

tentative protocol, which employs Josephson junctions.

Consider a quantum particle of mass m (the “detec-

tor”, or D particle) split into a superposition of two po-

sitions and then recombined. For concreteness, imagine

it is a particle with spin 1/2, prepared in the |+iz eigen-

state of the spin in the z direction, and split according to

the eigenstates |±iy of the spin in the y direction. Upon

recombination, the particle will still be in the |+iz state.

But say a (classical) particle with mass M (the “dark

matter”, or DM particle) flies rapidly next to one of the

two positions, during the time the state was split. The

DM particle transfers di↵erent amounts of momentum to

the two branches of the D particle, altering their rela-

tive phase. Upon recombination, the phase shift can give

rise to a non-vanishing probability of measuring the |�iz
eigenstate. Figure 1 illustrates the setting.

Let us estimate the magnitude of the e↵ect. We take

the D particle as the source of an external potential for

the DM particle. As shown in the appendix, the dis-

placement of the D particle due to the passage of the

DM particle is negligible:

�d ⇡ c
2

v2

M

mp
`p, (1)

where d and v are defined in Figure 1 and `p, mp and c

are the Planck length, the Planck mass, and the speed

of light, respectively. Indeed for M ⇡ mp and v ⇡ 10
�3

c

(the mean velocity of DM particles in the galactic halo

[12]) �d is of the order of 10
�6

`p. Thus, detection using

the classical response would be nearly impossible. We

may thus assume the interaction not to change positions

of the D particle significantly. We can then estimate the

v

✏

d

m

M

FIG. 1: A particle of mass m in a superposition state with
separation ✏. The DM particle passes by with velocity v and
a closest approach distance d.
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Appendix A: Supplementary material: Exact
classical non-relativistic calculation

The general relativistic expression for the action of a

test particle (here the D particle) is proportional to its

proper time

S = �mc
2

Z
d⌧, (A1)

where c d⌧ =
p
�ds2, and we have set the speed of light

to unit. In the weak field approximation the line element

ds
2
defining the gravitational field generated by the DM

particle is

ds
2
= �

✓
1� 2GM

r

◆
c
2
dt

2
+

✓
1 +

2GM

r

◆
d~x

2
, (A2)

where G is the Newton constant. Using t as integration

variable along the trajectory of the DM particle gives

S = �mc
2

Z
dt

s✓
1� 2GM

r

◆
�
✓
1 +

2GM

r

◆
~̇x2

c2
, (A3)

whose leading order expansion in ~̇x and M/r gives the

expected non-relativistic action up to a constant, namely

S =

Z ✓
1

2
m~̇x

2 � V (r)�mc
2

◆
dt, (A4)

with V (r) = �GM/r the Newton’s potential.

Now we explicitly compute the action evaluated on

classical solutions. Success is granted by the fact that the

Newtonian two-body problem is exactly solvable using

conservation laws. The relativistic case can be equally

solved, but we do not need it since relativistic correc-

tions are negligible for cold dark matter particles. We fix

the the center of mass frame and assume, for simplicity,

that M � m implying that the center of mass coincides

with the position of of the DM particle M . The action

di↵erence is invariant under Galilean transformations.

In spherical coordinates—and ignoring the constant

term in the Lagrangian—the action (A4) becomes

S =

Z ✓
1

2
mṙ

2
+

1

2
mr

2
�̇
2 � V (r)

◆
dt (A5)

where we have used the fact that in spherical coordinates

~̇x = ṙêr + r�̇ê� when one assumes (without loss of gener-

ality) the motion to happen on the ✓ = ⇡/2 plane. Due

to spherical symmetry, angular momentum is conserved

L = mr
2
�̇ = constant, (A6)

using this and r as integration parameter (A5) becomes

S =

Z ✓
1

2
mṙ

2
+

L
2

2mr2
� V (r)

◆
dr

ṙ
(A7)

Finally we get ṙ from energy conservation, namely

1

2
mṙ

2
+

L
2

2mr2
+ V (r) = E (A8)

from which we get that

ṙ =

s
2

m

✓
E � L2

2mr2
� V (r)

◆
. (A9)

Writing V (r) = �GmM/r = �c
2
mM`p/(mpr) (where

we wrote G in terms of Planck mass mp, Planck length

`p, and c), and substituting the previous two equations

in (A7) we get

S = 2

r0Z

1

E + 2c
2
`p

mM
mprr

2
m

⇣
E � L2

2mr2 + c2`p
mM
mpr

⌘dr (A10)

where we have split the integral into the two symmetric

branches around the point of closest approach r0 corre-

sponding to the situation where ṙ = 0 or equivalently

E � L
2

2mr20

+ c
2
`p

mM

mpr0
= 0. (A11)

Introducing the impact parameter d via the relation L =

dmv with v = ṙ|1 or, using the conserved quantities,

L
2
= m

2
d
2
v
2
= 2Emd

2
, (A12)

we can write the condition (A11) as

1

2
v
2 � d

2

2r20

v
2
+

M`p

mpr0
c
2
= 0, (A13)

where we replaced E = mv
2
/2. The value of r0 is

r0 =

�c
2
`pM +

q
c4`2pM

2 + d2m2
pv

4

mpv
2

(A14)

For d � `p one has

r0 = d� c
2

v2

M

mp
`p +O

"✓
c
2

v2

M

mp

◆2
`p

d

#
`p (A15)

and the impact parameter coincides with the parameter

d in Figure 1 to leading order. And the action (A10)

reads

S =

r0Z

R

2

⇣
1
2mv

2
+ 2mc

2M`p
mpr

⌘

r⇣
v2 � d2

r2 v
2 + 2

M`p
mpr

c2
⌘dr. (A16)

which is divergent when the cut-o↵ R ! 1 limit is taken.

This is normal as the action of an unbounded trajectory

is infinite (the action is proportional to proper time, as

in (A1)). We are interested in the change in the action

Classical detection seems
very hard

where r0 is the point of closest approach
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AMU Université, Université de Toulon, CNRS, CPT, F-13288 Marseille, EU

b
Department of Philosophy, University of Western Ontario, London, ON N6A 3K7, Canada
c
The Rotman Institute of Philosophy, 1151 Richmond St. N London N6A5B7, Canada
d
Perimeter Institute, 31 Caroline Street N, Waterloo ON, N2L2Y5, Canada and

e
Institute for Quantum Optics and Quantum Information, Boltzmanngasse 3, 1090 Vienna, Austria

(Dated: January 4, 2024)

In spite or the large astronomical evidence for its existence, the nature of dark matter remains
enigmatic. Particles that interact only, or almost only, gravitationally, in particular with masses
around the Planck mass—the fundamental scale in quantum gravity, are intriguing candidates. Here
we show that there is a theoretical possibility to directly detect such particles using highly sensitive
gravity-mediated quantum phase shifts. In particular, we consider a protocol utilizing Josephson
junctions.

Planck mass particles that interact only or almost only

gravitationally are intriguing dark matter candidates for

several reasons. The Planck scale is the fundamental

scale in quantum gravity and it is plausible to expect

stable or quasi-stable objects at this scale as part of the

spectrum. There are arguments indicating that quantum

gravity may stabilize Planck-mass black hole remnants at

the end of the evaporation [3]. Hawking radiation theory

predicts small black holes to radiate intensely, but the

Planck scale is outside the domain of validity of Hawk-

ing’s theory, which does not take quantum gravity phe-

nomena into account [6]. Stable or semi-stable Planck

mass objects could therefore be a consequence of quan-

tum gravity. Notice that this is a dark matter candidate

that does not require exotic assumptions of new unknown

physics beyond the standard model, general relativity,

and quantum theory. Furthermore, the strength of the

interaction of such particles, combined with the assump-

tion of a su�ciently hot big bang, leads to a density of

these objects at decoupling whose order of magnitude is

compatible with the present dark matter density [4, 5].

Here we observe that recent developments in the area

of table-top experiments involving gravity and quantum

phenomena (we follow especially [8], see for instance [9]

for up do date references) open the theoretical possibility

of direct detection of purely-gravitationally-interacting

dark matter particles. We first consider an idealised de-

tector where the center of detector mass is set in a su-

perposition of locations. Then discuss a more concrete

tentative protocol, which employs Josephson junctions.

Consider a quantum particle of mass m (the “detec-

tor”, or D particle) split into a superposition of two po-

sitions and then recombined. For concreteness, imagine

it is a particle with spin 1/2, prepared in the |+iz eigen-

state of the spin in the z direction, and split according to

the eigenstates |±iy of the spin in the y direction. Upon

recombination, the particle will still be in the |+iz state.

But say a (classical) particle with mass M (the “dark

matter”, or DM particle) flies rapidly next to one of the

two positions, during the time the state was split. The

DM particle transfers di↵erent amounts of momentum to

the two branches of the D particle, altering their rela-

tive phase. Upon recombination, the phase shift can give

rise to a non-vanishing probability of measuring the |�iz
eigenstate. Figure 1 illustrates the setting.

Let us estimate the magnitude of the e↵ect. We take

the D particle as the source of an external potential for

the DM particle. As shown in the appendix, the dis-

placement of the D particle due to the passage of the

DM particle is negligible:

�d ⇡ c
2

v2

M

mp
`p, (1)

where d and v are defined in Figure 1 and `p, mp and c

are the Planck length, the Planck mass, and the speed

of light, respectively. Indeed for M ⇡ mp and v ⇡ 10
�3

c

(the mean velocity of DM particles in the galactic halo

[12]) �d is of the order of 10
�6

`p. Thus, detection using

the classical response would be nearly impossible. We

may thus assume the interaction not to change positions

of the D particle significantly. We can then estimate the

v

✏

d

m

M

FIG. 1: A particle of mass m in a superposition state with
separation ✏. The DM particle passes by with velocity v and
a closest approach distance d.

.

ar
X

iv
:2

30
9.

08
23

8v
2 

 [g
r-q

c]
  3

 Ja
n 

20
24

What about quantum mechanically
(using interferometry)

2

relative quantum phase between the two superimposed

configurations as

�S =

Z
dt

 
GmMp
d2 + (vt)2

� GmMp
(d+ ✏)2 + (vt)2

!
, (2)

which only involves the di↵erence of the integrated New-

tonian potential in the two superimposed configurations

of the D particle separated by the distance ✏. G is the

Newton constant. The integration of each term is log-

arithmically divergent, but the integration of the di↵er-

ence is finite. A direct evaluation gives

�S = 2
GmM

v
log(1 + ✏/d) ⇡ 2

GmM

v

✏

d
(3)

An improved calculation that takes into account the mod-

ification of the trajectory of the DM particle is given in

the Appendix. It changes the factor 2 in Eq. (3) into a

3.

The di↵erence in the action gives a phase di↵erence in

the evolution of the two branches of the overall quantum
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Due to the amplifying nature of the factor c/v in eq. (6),

pushing technology to masses m ⇠ 10
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mp is required,

in order for the prefactor of ✏/d to become order unity
1
.

An intriguing possibility is to consider the e↵ect of

the phase shift (4) on a large number of particles in a

coherent state. A device that allows to exploit this pos-

sibility is a superconducting Josephson junction (JJ)
2
.

This realization of the detector has the advantage that

the collective state of the electrons translates the proba-

bilistic response of (5) into a directly measurable signal,

circumventing the need of a statistical reconstruction of

the phase. It is easy to see that the phase shift due to

the interaction of the electrons with the DM particle gives
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material [18]. Present technology allows for the integra-

tion of transistors at close to the nano-meter scales [16]

and it seems possible to produce JJ with
p
a ⇠ 50 nm

in the future. Using this, and the value "f ⇠ 7eV (for

copper) we estimate I ⇠ (✏/d)s
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(electrons per second).

In an idealized aligned configuration of about 10
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of this letter. Much lower temperatures have been at-

tained in the lab in small controlled environments [17],

but achieving this at the space and time scales necessary

for a realistic detector configuration is likely to be the

key challenge. Interestingly, WIMP-cryogenic detectors

already operate at the mK regime [21]. Among the issues

of a concrete detection are also the fact that if DM parti-

cles have Planckian mass the flux on earth is expected to

be of the order of one particle per meter square per year

[7]. However, given that the JJ protocol is a one-shot

detection, covering an area of several square meters with

such detectors could give a significant rate of signal.

Challenges are significant, but it is remarkable that

quantum mechanics can amplify e↵ects—which classi-

cally reduce to undetectable Planck scale displacements

1 Notice that in the theoretical derivation of the e↵ect we have
taken the gravitational field of the detector particle, and hence
spacetime geometry, to be itself in quantum superposition, as
pointed out in [8].

2 Josephson junctions in SQUID’s have been suggested as super-
sensitive gravitational detectors [13, 14] as well as for cold dark
matter search [15].
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(1)—to macroscopic observable levels. Rapidly evolv-

ing quantum computing technologies combined with the

growing interest in experiments testing the interface of

gravity and quantum mechanics can be used to address

crucial questions in astrophysics, and possibly provide di-

rect validation of certain implications of quantum gravity.

I

d

✏

M

v

FIG. 2: A series of aligned Josephson junctions interacting
with the DM particle. This optimal configuration is used for
the purpose of simplicity of our estimate.
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There is another way of looking at this result. The
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to the change of the Hamilton function for the motion of
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A non-negligible phase shift can give rise to a non-

vanishing probability P of measuring the recombined D

particle in the state |�iz, as

P =
1� cos��

2
. (5)

If the dark matter particles have Planckian mass [3–5],

M ⇠ mp, then

�� ⇠ ✏

d

c

v

m

mp
. (6)

It is useful to estimate the size of the e↵ect using some

numbers. It is possible to put a mass of the order m ⇡
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�17
Kg = 2⇥ 10
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mp into quantum superposition [11].

The speed of cold DM particles in the galactic halo leads

to an expected mean velocity on earth of v ⇡ 10
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c [12].

This gives
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Due to the amplifying nature of the factor c/v in eq. (6),

pushing technology to masses m ⇠ 10
�3

mp is required,

in order for the prefactor of ✏/d to become order unity
1
.

An intriguing possibility is to consider the e↵ect of

the phase shift (4) on a large number of particles in a

coherent state. A device that allows to exploit this pos-

sibility is a superconducting Josephson junction (JJ)
2
.

This realization of the detector has the advantage that

the collective state of the electrons translates the proba-

bilistic response of (5) into a directly measurable signal,

circumventing the need of a statistical reconstruction of

the phase. It is easy to see that the phase shift due to

the interaction of the electrons with the DM particle gives

rise to the current across the junction

I = Ic sin(��e), (8)

where ��e ⇡ 10
�19

✏/d is given by (4) with me ⇡
10

�22
mp (the electron mass), ✏ is the insulator width

of the JJ, and Ic the critical current. For small ✏ one

has that Ic ⇡ e~nsa/(me✏) where a is the area of the JJ

and (at low temperatures) the density of superconduct-

ing electrons ns approaches the Fermi density ns ⇡ nf =

(3⇡
2
)
�1

(2me"f/~2)3/2 with "f is the Fermi energy of the

material [18]. Present technology allows for the integra-

tion of transistors at close to the nano-meter scales [16]

and it seems possible to produce JJ with
p
a ⇠ 50 nm

in the future. Using this, and the value "f ⇠ 7eV (for

copper) we estimate I ⇠ (✏/d)s
�1

(electrons per second).

In an idealized aligned configuration of about 10
8
junc-

tions connected in parallel along one meter (as in Fig 2)

the DM particle would induce a current of the order of

10
7
✏/ds

�1
(electrons per second) with a single DM event

(I ⇡ 10
�11

(✏/d)A).

To exceed the thermal noise current IT ⇡ ekT/~ ⇡
10

�7
T/(1K)A would require T < 10

�1
mK in the setting

of this letter. Much lower temperatures have been at-

tained in the lab in small controlled environments [17],

but achieving this at the space and time scales necessary

for a realistic detector configuration is likely to be the

key challenge. Interestingly, WIMP-cryogenic detectors

already operate at the mK regime [21]. Among the issues

of a concrete detection are also the fact that if DM parti-

cles have Planckian mass the flux on earth is expected to

be of the order of one particle per meter square per year

[7]. However, given that the JJ protocol is a one-shot

detection, covering an area of several square meters with

such detectors could give a significant rate of signal.

Challenges are significant, but it is remarkable that

quantum mechanics can amplify e↵ects—which classi-

cally reduce to undetectable Planck scale displacements

1 Notice that in the theoretical derivation of the e↵ect we have
taken the gravitational field of the detector particle, and hence
spacetime geometry, to be itself in quantum superposition, as
pointed out in [8].

2 Josephson junctions in SQUID’s have been suggested as super-
sensitive gravitational detectors [13, 14] as well as for cold dark
matter search [15].
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The collective state of the electrons translates the 
probabilistic response of previous protocol into a 
directly measurable signal, circumventing the need of 
a statistical reconstruction of the phase. It is easy to 
see that the phase shift due to the interaction of the 
electrons with the DM particle gives rise to the current 
across the junction

Improved protocol using Josephson
junctions
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(1)—to macroscopic observable levels. Rapidly evolv-

ing quantum computing technologies combined with the

growing interest in experiments testing the interface of

gravity and quantum mechanics can be used to address

crucial questions in astrophysics, and possibly provide di-

rect validation of certain implications of quantum gravity.

I

d

✏

M

v

FIG. 2: A series of aligned Josephson junctions interacting
with the DM particle. This optimal configuration is used for
the purpose of simplicity of our estimate.
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cally reduce to undetectable Planck scale displacements

1 Notice that in the theoretical derivation of the e↵ect we have
taken the gravitational field of the detector particle, and hence
spacetime geometry, to be itself in quantum superposition, as
pointed out in [8].

2 Josephson junctions in SQUID’s have been suggested as super-
sensitive gravitational detectors [13, 14] as well as for cold dark
matter search [15].
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An improved calculation that takes into account the mod-
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to the change of the Hamilton function for the motion of

the DM particle in the field of the D particle. In turn,

this is precisely the change in momentum, by the general
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sibility is a superconducting Josephson junction (JJ)
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of a concrete detection are also the fact that if DM parti-
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be of the order of one particle per meter square per year

[7]. However, given that the JJ protocol is a one-shot
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Conclusion: 

I introduced an alternative paradigm of structure formation where inhomogeneities in the CMB are the 
traces of inhomogeneities present at the Planck scale percolating to low energies during an inflationary era.

Consistency requires the inflationary scale to be close to the Planck scale (the natural quantum gravity 
scale), and most naturally, a reheating temperature that is about the Planck scale too.

The previous is not in conflict with the lack of observation of GW effects in the CMB (GW production is 
small within the picture).

If the big bang initial temperature is about the Planck scale, and if Planckian black holes are stable (as 
predicted by arguments in quantum gravity) then thermal production leaves a remnant DM density of such 
black holes that is of the correct order of magnitude to explain DM today (the gravitational miracle).

This would be the hardest of DM candidates to be directly detected. Quantum interferometry in the context 
of macroscopic quantum devices as Josephson junctions suggest that this could be possible in the not too 
far future.

This would provide an unprecedented observational handle into the structure of quantum gravity.
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