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Introductory Remarks:

Hawking showed that BHs radiate at kTH ≈ mP
M mPc

2.

Two time scales are relevant to the radiation process:

1. Tevap ∼ M
Ṁ
, Ṁ ∼ σ T 4

HR
2
S

2. Tsettling down: When BH radiates and loses mass, it takes some time
to settle down. This can be estimated as the time one part of the
BH takes to communicate with another:
Tsettling down ∼ RS

c

Tsettling down

Tevap
∼ m2

P

M2 << 1
‘Practically instantaneous settling down’ implies we can model
process through QFT on 1 parameter family of fixed BH geometries
of decreasing mass. Valid till mass of BH is approx mP at which
point QG effects become important.

Final State = mP + Thermal Radiation = Mixed State.
Initial State: Matter in a pure quantum state
INFO LOSS.



Note: Hawking’s calculation is of QFT on a fixed sptime geometry
whereas in reality the bh radiation back-reacts on the geometry.
Backreaction effects are estimated through physical arguments
resting on quasistaticity but not computed.

Question: Does an actual computation of back reaction alter
Hawking’s proposed picture of info loss in anyway?
To answer this, we need a classically solvable system of collapse
with computable back reaction.



To this end, I consider a system of spherically symmetric scalar
field collapse with following key features:

Geometry is that of Spherically symm GR.
Ensures TH ∼ 1/M.

Axis of symmetry is part of sptime.
Ensures a single set of asymptotic regions rather than
‘Kruskal’ type situation.

Matter coupling depends on the Areal Radius in a specific way.
Ensures classical solvability (Vaidya).
Ensures computability of matter stress energy exp value, and
hence, formulation of semiclassical Einstein equations.
Allows informed speculation on the fate of information.



Plan of Talk:

1. Kinematic Setup in Spherical Symmetry

2. Classical Dynamics: Einstein eqns, Vaidya solution

3. Semiclassical Dynamics: Semiclassical Einstein equations,
Semiclassical Solution

4. Asymptotic Analysis of Semiclassical Einstein Equations

5. Informed Speculation: Arena for true degrees of freedom, Fate
of Information



1. Kinematics: Geometry in Spherical Symmetry
ds2 = (2)gµνdx

µdxν + R2(dΩ)2, µ, ν = 1, 2
Choose conformal coordinates x± along radial outgoing/ingoing
light rays: (2)gµνdx

µdxν = −e2ρdx+dx−

4πR2 is area of spherical light front at fixed x+, x−, R = R(x+, x−).
Outgoing/Ingoing expansions are proportional to ∂+R, ∂−R.

Geometry is such that Axis of Symmetry is part of our sptime.
Restrict attention to sptimes where Axis of Symmetry is timelike
curve.

‘Straighten’ out axis by choice of conformal coordinates:
Axis curve can be written as x+ = a(x−). By choosing a(x−) as our
new x−, axis becomes straight line x+ = x−.
Setting x± = t ± x , Axis is at x = 0.

In summary: Region of interest is the x ≥ 0 part of the x − t plane.

Note: By definition R = 0 at axis and geometry near axis is
non-singular (as opposed to R = 0 BH singularity).
In solns of interest geometry at axis turns out to be flat.



Initial conditions on Geometry:

Your text here 1

Require metric to be asymp flat at I− and require I− to be located
at x− = −∞.
This is achieved by requiring that as x− → −∞:

R = x+−x−
2 + O(1/x−) ε2ρ = 1 + O(1/(x−)2)

Vaidya solution satisfies these with mass info in O(1/x−) part of R
and in O(1/(x−)2) part of e2ρ.

This together with location of axis at x = 0 fixes all freedom in
choice of conformal coordinates.

In summary: Region of interest is the x ≥ 0 part of the x − t plane.
I− is located at x− = −∞. Axis is located at x = 0.



Behavior of matter at the axis and at I−

Your text here 1

At the axis: A point on the x+, x− plane away from the axis
represents a 2d sphere of radius R(x+, x−). A point on the axis is
just a 0d point. Matter field f is spherically symmetric
f = f (x+, x−) and differentiable in 4d at the axis. It turns out that
this implies that at the axis ∂+f = ∂−f

At I−: We require the matter field to be of compact support on I−
so that f (x+,−∞) = g(x+), g comp support in x+.
We also require g(x+) to satisfy a certain condition of prompt
collapse appropriate to the Vaidya solution. Roughly, this requires a
discontinuous jump in the derivative of g at its initial support.



2. Dynamics: Action
Geometry: Sgeometry = 1

8πG

∫
d4x

√
−(4)g (4)R

In order to facilitate comparision with 2d gravity conventions in
literature hereon we set R2 = R2

old/κ
2. (In 2d gravity, R2 =: e−2φ

where φ is called the dilaton.) κ is an arbitrarily chosen (but fixed)
constant with dimensions of length.

Integrating over angles and removing total deriv terms:

Sgeometry = 1
2Gκ2

∫
d2x

√
−(2)gR2[(2)R + 2(∇RR )2 + 2κ2]

Matter coupling: The matter coupling is chosen to depend on the
Areal Radius R so that the matter action is:

Smatter = − 1
8π

∫
d4x

√
−(4)g (4)g

ab 1

κ2R2 (∇af∇bf )

Integrating over angles, we obtain:

Smatter = −1
2

∫
d2x

√
−(2)g(∇f )2.

The coupling reduces to conformal coupling to the 2d metric.

The total action is then Sgeometry + Smatter . In what follows it is
convenient to set G = c = κ = 1. Thus ~ is not set to unity.



EoM: Einstein’s Equations

4d Einstein equations in spherical symmetry in (x+, x−,Ω)
coordinates

GΩΩ = 0 ≡ ∂+∂−ρ+ 1
R ∂+∂−R = 0 (TΩΩ = 0)

R2 G+− = 2R∂+∂−R + 2∂+∂−R + 1
2e

2ρ = 0 (Traceless Tab)

R2 G±± = R2[− 2
R (∂2

±R − 2∂±ρ∂±R)] = (∂±f )2

Since Gab = 8πGTab, we have that the only non-trivial stress energy
components are T±± = 1

4πR2 ( 1
2 (∂±f )2).

This is exactly the form of a pair of (ingoing, outgoing) streams of
null dust. The Vaidya solution only has an ingoing stream...



Matter EoM and the Vaidya Solution
Matter eqns: f doesnt see conformal factor, satisfies 2d wave
equation on x − t plane, f = f(+)(x+) + f(−)(x−).
The axis conditions imply:
∂+f(+)(x+) = ∂−f(−)(x−) at axis i.e. at x+ = x−.

So till the compactly supported infalling matter hits the axis there is
no outgoing matter stream. But in the (prompt collapse) Vaidya
solution, as soon as the matter hits the axis a spacelike singularity
forms.
It can be checked in all technical detail that the Vaidya metric,
expressed in null coordinates, is a classical solution in which axis is
located at x = 0 and which is asymp flat as x− → −∞.



3. Semiclassical Theory: Matter field quantization
Field Operator:Conformally coupled massless scalar field does not
‘see’ metric conformal factor, propagates freely on the fiducuial flat
x − t spacetime. Can expand f̂ in terms of left, right moving
modes. Axis boundary conditions imply these are not independent:

f̂ (x+, x−) = f(+)(x+) + f(−)(x−)

=
∫∞

0 dk 1√
4πk

(â(k)e−ikx
+

+ h.c) +
∫∞

0 dk 1√
4πk

(â(k)e−ikx
−

+ h.c)

(Mode functions are cos kxe−ikt
√
πk

)

Hilbert Space: Fock space wrto â(k), â†(k). Note that since the
4-metric is asym flat at I−, (x , t) coordinates are freely falling there
so that ‘fiducial’ and physical vacuum coincide at early times.

Above quantization can be used either for test field on Vaidya
sptime, or for defining semiclassical gravity Gab =< Tab > or even
perhaps for fundamental quantum gravity-matter system...

For the quantum test field, an argument similar to Hawking’s
establishes late time thermal radiation at the Hawking Temperature.



Semiclassical Einstein Equations:

Since the scalar field is conformally coupled to the 2d metric, its
quantum stress energy expectation value can be calculated using the
results of Davies and Fulling. Their results continue to hold in the
presence of the boundary at the axis because the axis is a straight
line in the flat sptime coordinates.

Recall that due to asym flatness, the fiducial flat sptime coordinates
are freely falling at I−. If the field is in a coherent state modelled
on the classical data at I−, < T̂ab > has in addition to its ‘classical’
contribution, a vacuum fluctuation part proportional to ~. In order
to include quantum fluctuations in the matter but neglect those in
the geometry, we enhance the vacuum contribution by a factor of N
by conformally coupling an additional N − 1 number of matter fields
each in their vacuum state with N~ held fixed as ~→ 0.



The semiclassical Einstein eqns Gab = 8πG < T̂ab > take the form:
GΩΩ = 0 ≡ ∂+∂−ρ+ 1

R ∂+∂−R = 0

R2 G+− = 2R∂+∂−R + 2∂+R∂−R + 1
2e

2ρ =− N~
12π∂+∂−ρ

R2 G±± = R2[− 2
R (∂2

±R−2∂±ρ∂±R)] = (∂±f )2− N~
12π ((∂±ρ)2−∂2

±ρ)
Note that when ρ = 0, quantum part vanishes. Thus, when f
vanishes, classical flat spacetime (with e2ρ = 1) remains a soln.
Note also that we can eliminate ∂+∂−ρ between the first two eqns:
1
R ∂+∂−R = −∂+R∂−R+ 1

4
e2ρ

R2− N~
24π

. Denominator vanishes at R2 = N~
24π .

Analysis of the pde’s implies that for generic matter data on I−,
there is a curvature singularity at R2 = N~/24π.



Semiclassical Soln

One quasilocal characterization of BH is existence of outer
marginally trapped surface (OMTS)

∂+R = 0=constant at OMTS. Its normal is:
(n+ = ∂2

+R, n− = ∂−∂+R).
These components respond to stress energy via the Einstein eqns.
Can show as expected that when 〈T̂++〉 is positive/zero/negative,
OMTS is splike-expanding/null-nonexpanding/timelike- shrinking.

One possible scenario which seems to be consistent with:
- the semiclassical eqns,
- the existence of singularity at R2 = N~

24π ,
- the early flat phase,
- a post collapse evaporating phase,
- agreement with the classical sptime when ~ = 0

is as follows..



An AH is born near the singularity along the initial classical matter
infall line. At sing both sets of light rays converge so ∂−R, ∂+R < 0

Since R =
√

N~
24 is constant along the singularity, its normal

=(∂+R, ∂−R). Normal is timelike so singularity is splike.

〈T̂++〉 is expected to dominated by the classical piece till Hawking
evaporation starts at which point on 〈T̂++〉 is negative and AH
transmutes to timelike Outer Marginally Trapped Tube. Timelike
OMTT and splike sing either intersect and a Cauchy horizon
develops (or both asymptote to a null ‘thunderbolt)

Above (no thunderbolt) picture is supported by old simulations by
Lowe, Parentani-Piran.



4. Asymptotic Analysis:
We make well motivated assumption that metric is asymp flat as
x+ →∞. Then Sph.symmetry + outgoing Hawking radiation +
asymp. flatness suggest that the metric takes the ‘outgoing’ Vaidya
form at I+ in outgoing Eddington-Finkelstein coordinates ū,R.
ū is an outgoing null coordinate which need not coincide with x− so
we have ū = ū(x−).

Under these assumptions we obtain:

−1
2R

2Gūū = dMB
dū (MB = Bondi mass along I+) so that:

dMB
dū = −4πR2〈Tūū〉 = −1

2 (∂ūf )2 + quantum contribution.

The quantum contribution is given by the standard Schwarz
derivative term and we get:
dMB
dū = −1

2 (∂ūf )2 + N~
48π ( 1

ū′ )
2[ 3

2 ( ū
′′

ū′ )
2 − ū′′′

ū′ ]

Classical flux is explicitly +ve but not so for the red term. But red
term can be re-written as:
N~
48π ( 1

ū′ )
2[ 3

2 ( ū
′′

ū′ )
2 − ū′′′

ū′ ] = N~
48π [−1

2
(ū′′)2

(ū′)4 − d
dū ( ū′′

(ū′)2 )] so that:

d
dū [MB + N~

48π
ū′′

(ū′)2 ] = −1
2 (∂ūf )2 − N~

96π
(ū′′)2

(ū′)4



Thus we may interpret [MB + N~
48π ( ū′′

(ū′)2 ] as a back reaction corrected

Bondi Mass which responds to the positive definite flux
1
2 (∂ūf )2 + N~

96π
(ū′′)2

(ū′)4 .

Let us assume that the black hole stops radiating when it exhausts
its corrected Bondi Mass. The flux must then vanish. The olive
term vanishes once we go beyond its classical support as shown in
the figure on the next slide. The red term must also vanish. Its
vanishing implies that ū = αx− + β for some constants α, β. This
means that the physical I+ is as long as the fiducial I+. Suggests
that there is a quantum extension of the classical Vaidya I+.



6. Speculation: Arena for true degrees of freedom
Recall that the quantum scalar field sees no singularities and lives on
the fiducial spacetime. Classically if the scalar field is set to vanish,
the only solution is flat sptime. This suggests that the scalar field
can be thought of as coordinatizing the true degrees of freedom of
the system.

Speculation: If the true degrees of freedom are the scalar field ones,
the fundamental Hilbert space for the entire system is the scalar
field Fock space and the natural arena is the fiducial spacetime



Closing Remarks
The scenario is supportive of the AB paradigm in which correlations
with Hawking radiation emerge in the vast region beyond the
singularity.

Directly relevant tools to study purification of Hawking radiation
have been developed by Agullo, Calizaya Cabrera, Elizaga
Navascues. Seems to indicate that purification and info in matter
profile are distinct “purification recovers the ‘vacuum’ part of the
initial state”

Earlier work on CGHS by Ori seems applicable so as to continue the
geometry beyond the semiclassical singularity. Comparision with
BH-WH geometry (Han, Rovelli, Soltani)

From earlier work on CGHS by AA, FP, FR, potential for very
interesting numerical discoveries along ‘last ray’ (universality).

Good model to attempt systematic non-pert canonical
quantization....

Details of my work in e-Print: 2406.09176 [gr-qc]



Additional Notes

The old and corrected flux can be calculated at late times for
classical Vaidya. They agree (!) and equal N~

24π ( 1
64M2 ).

But new Bondi mass = Mold + N~
48π ( 1

4M )

Parameterize the trajectory followed by the DH by its ‘shape’
x−(x+).
d∂+R
dx+ = ∂2

+R + dx−

dx+ ∂−∂+R = 0
dx−

dx+ = − ∂2
+R

∂−∂+R = −16π〈T++〉e−2ρ(R2 − N~
24π ).

dR
dx+ = ∂+R + dx−

dx+ ∂−R
For large mass M >> N black holes, can argue that the shape can
be well approximated by calculating with classical Vaidya at
R = 2M.
Obtain dR

dx+ = − N~
12π

1
64M2 . If we set R = 2M get:

dM
dx+ = − N~

24π ( 1
64M2 ) !!!

Simulations: Lowe shows no thunderbolt. P+P show that flux falls
off from its ∼ 1/m2 behavior at late times.


