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Reminder: Motivation

Black holes are one of the few places quantum gravity effects are
expected to be important.

There are two main problems in black hole physics that any
successful theory of quantum gravity should be able to solve:

Singularity
Black hole space-times in general relativity are singular. Can
quantum gravity resolve the singularity?

Information loss problem
Hawking radiation is thermal. If a black hole fully evaporates, an
initial pure state seems to evolve to a thermal state. Can
quantum gravity somehow restore unitarity?
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Black Hole Collapse

Goal: study quantum gravity effects in black holes, according to loop
quantum gravity, starting from the initial collapse.

There are (at least) two good reasons to study black hole collapse:

1. How is the singularity avoided?
This is presumably a dynamical process, so we should study
space-times where (classically) the singularity forms dynamically.

2. The role of matter
Classically, vacuum is often thought sufficient since matter from
the collapse will eventually hit the singularity and ‘disappear’.
But what if there is no singularity?
→ During collapse an inner horizon forms; this is missed in vacuum.

For these reasons, we studied the Lemâıtre-Tolman-Bondi (LTB)
space-time: spherically symmetric, with a dust field, building on a lot
of earlier work studying black holes in LQG.

E. Wilson-Ewing (UNB) Shock formation during collapse June 27, 2024 3 / 21



Main Steps

1. Start with classical GR, using the Hamiltonian framework with
Ashtekar-Barbero variables and impose spherical symmetry;

2. Gauge-fix the scalar constraint by using the dust field as a clock,
and gauge-fix the diffeo constraint by using the areal gauge:

ds2 = −1 dt2 + f (x , t) (dx + Nxdt)2 + x2dΩ2;

3. Discretize along the radial coordinate;

4. Do a loop quantization at each point along the radial lattice;

5. Extract effective dynamics from the quantum theory, and take
the continuum limit.
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Loop Quantization: Holonomies

A key step in the loop quantization is to calculate holonomies of the
Ashtekar-Barbero connection.

Due to spherical symmetry, holonomies along an edge on a great
circle of a sphere at fixed radius x = x0 do not depend on the angular
coordinates. The only input required is the coordinate (angle) length
µ̄ of the holonomy,

hθ(µ̄) = P exp

∫ µ̄

0

dθ b(x0) τ2 = cos

(
µ̄b

2

)
I+ 2 sin

(
µ̄b

2

)
τ2.

In LQC, the fundamental discreteness of LQG geometric operators
motivates an operator for (components of) the field strength to be
based on holonomies with a small but finite length of order ∼ ℓPl
(not an infinitesimal length).
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Loop Quantization: Fixing µ̄

µ̄ is the coordinate length of the edge in the θ direction, and we want
the physical length to be ℓPl [Ashtekar, Paw lowski, Singh, 2005].
To fix µ̄, we use the metric.

µ̄

x
∆s = x µ̄

In this case, the path for the holonomy is
an arc with angle µ̄ of a great circle of
radius x . To get the physical length
∆s = ℓPl requires

µ̄ =
ℓPl
x
.

For LQC improved dynamics in spherical symmetry, see also [Boehmer,

Vandersloot, 2007; Chiou, Ni, Tang, 2012; Gambini, Olmedo, Pullin, 2020].

This procedure fails for paths that are null, but the relevant paths
here are always spacelike for any x .
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Effective Dynamics

In homogeneous cosmology, the quantum dynamics of sharply-peaked
states is very well approximated by a set of LQC effective dynamics
defined on the classical phase space that include ℏ corrections [Ashtekar,

Paw lowski, Singh, 2005; Taveras, 2008; Rovelli, WE, 2013; Bojowald, Brahma, 2015].

The key input to derive the effective equations is to neglect quantum
fluctuations, but retain modifications due to finite-length holonomy
corrections.

Effective dynamics can also be derived for LTB space-times, it is
generally expected that they will again be a good approximation for
sharply-peaked states so long as we don’t probe Planck-length scales
[Zhang, 2021].

Planck curvature scales are ok: the Kretschmann invariant
K ∼ M2/x6, so Planck curvature arises at x ∼ (ℓ2

PlM)1/3 ≫ ℓPl.
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Effective Equations

The effective dynamics capture leading-order loop quantum gravity
effects, and are generated by a Hamiltonian (density)

Heff = − 1

2G

[
E b

ℓ2
Plx

∂x

(
x3 sin2 ℓPlb

x

)
+

x

E b
+

E b

x

]
.

I will focus on the ‘marginally bound’ class of solutions

ds2 = −dt2 + 1 (dx + Nxdt)2 + x2dΩ2.

There remains one degree of freedom b (the connection component
in angular directions) that satisfies the non-linear equation of motion

ḃ +
1

2ℓ2
Plx

∂x

(
x3 sin2 ℓPlb

x

)
= 0.

To find solutions to non-linear wave equations, it is typically
necessary to allow weak solutions.
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Weak Solutions

Weak solutions are not differentiable, so they cannot solve a
differential equation—but they can solve an integral form of the
equation of motion. For the conservation equation

u̇ + ∂x [f (u)] = 0,

weak solutions u(x , t) satisfy∫ x2

x1

dx u
∣∣∣t=t2

t=t1

+

∫ t2

t1

dt f (u)
∣∣∣x=x2

x=x1

= 0,

for all x1, x2, t1, t2.

When the weak solution is discontinuous, the discontinuity is called a
shock wave.
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Weak Solutions in General Relativity

Examples of weak solutions in general relativity are thin shell
solutions obtained using Israel’s junction conditions [Israel, 1966], and the
Dray-’t Hooft shock wave [Dray, ’t Hooft, 1985].

It has also been argued that weak solutions should be considered for
the LTB space-time in general relativity [Nolan, 2003; Lasky, Lun, Burston, 2006].

We will allow for weak solutions in the LQC effective dynamics for
LTB space-times.

Analytical methods are useful for simple configurations.

Otherwise, numerics are typically necessary, for example the
standard Godunov algorithm.
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Method of Characteristics

The method of characteristics can be used to solve a wave equation
that is linear in derivatives. For

u̇ + v(u, x) ∂xu = 0,

introduce parametrized curves t(s) and x(s) in the t − x plane, then

du

ds
= ∂tu · dt

ds
+ ∂xu · dx

ds
.

By choosing curves so dt/ds = 1 and dx/ds = v , the ODE reduces
to

du

ds
= ∂tu + v∂xu = 0,

so the solution is simply u(s) = u0.

This is a change of coordinates from (x , t) to (X , s), where X labels
the characteristic curves along which u is constant: X is a comoving
coordinate.
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When Characteristics Fail

The method of characteristics works up until characteristic curves
cross.

Suppose at t0 there are two points x1, x2 such that
u(x1, t0) ̸= u(x2, t0). If the two characteristic curves passing through
(x1, t0) and (x2, t0) later intersect at (x3, tint), the method of
characteristics predicts that u(x3, tint) = u(x1, t0) and also that
u(x3, tint) = u(x2, t0), which is a contradiction.

It can be verified that at this point the Jacobian for the coordinate
transformation from (x , t) → (X , s) vanishes: the coordinate
transformation is not valid. (For the previous example, the condition
J ̸= 0 is ∂Xx ̸= 0.)

At such a point, it is necessary to return to (x , t) coordinates and
look for weak solutions. The crossing of characteristics signals the
formation of a shock—a discontinuity in u.
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Comoving Coordinates for LTB

From the generalized Painlevé-Gullstrand coordinates for LTB,
comoving coordinates can be introduced most directly by looking at
the dust energy density

ρ =
1

8πG x2
∂x

(
x3

ℓ2
Pl

sin2 ℓPlb

x

)
,

which motivates the definition of the gravitational mass

m(x) = 4π

∫ x

0

dx̃ x̃2ρ(x̃).

The equation of motion for m is

ṁ +
x

ℓPl
sin

ℓPlb

x
cos

ℓPlb

x
∂xm = 0,

so characteristic curves for this PDE satisfy

dx

ds
=

x

ℓPl
sin

ℓPlb

x
cos

ℓPlb

x
.
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Lemâıtre Coordinates

The new coordinates are given by X = x0, and the metric in these
coordinates is

ds2 = −dt2 + (∂Xx)
2dX 2 + x(X , t)2dΩ2.

The equation for m has trivialized to ∂tm = 0, and the only truly
dynamical equation is

dx

dt
=

x

ℓPl
sin

ℓPlb

x
cos

ℓPlb

x
,

which can be rewritten in a more familiar LQC-like form

1

x2
·
(
dx

dt

)2

=
2Gm(x)

x3

(
1− 2Gm(x)ℓ2

Pl

x3

)
.

This can also be derived by working in Lemâıtre coordinates from the
start [Giesel, Liu, Rullit, Singh, Weigl, 2023].
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Shell-Crossings

In the language of general relativity, the crossing of characteristics is
a shell-crossing.

A shell-crossing can signal the failure of a system of coordinates, or a
true physical singularity. If it is only a coordinate singularity, then we
should just use different coordinates—this is the case for
Oppenheimer-Snyder collapse [Fazzini, Rovelli, Soltani, 2023; Giesel, Liu, Singh, Weigl, 2023].

In terms of the comoving coordinates,

ρ =
∂Xm

4πx2∂Xx
.

A shell-crossing happens when ∂Xx = 0.

⇒ This is a shell-crossing singularity when in addition ∂Xm ̸= 0 so
that ρ diverges (curvature scalars diverge too in this case).
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A Simple Example

Consider the piecewise-linear initial data

ρ =


ρo for X < X1,

ρo

(
1− X−X1

X2−X1

)
for X1 < X < X2,

0 for X > X2.

In the limit X2 → X1 this gives the Oppenheimer-Snyder profile.

Focusing on X1 < X < X2, clearly ρ(X ) ̸= 0 and so ∂Xm ̸= 0. If for
any t the condition ∂Xx = 0 holds for X1 < X < X2, then there is a
shell-crossing singularity.

This is a direct calculation, one simply needs to solve the ODE for
x(t) with the initial condition x(t0) = X0.

Result: There arises a shell-crossing singularity for any ρo > 0, and
any 0 < X1 < X2.
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Shell-Crossing Singularities are Generic

Theorem: [Fazzini, Husain, WE, 2024]

In the marginally bound case, for all initial conditions for the
dust field such that the energy density ρ ≥ 0 is continuous, of
compact support, and such that

∫ a

0
dx x2ρ > 0 for some a, a

shell-crossing singularity will form.

This happens at the latest 2
3
tPl after the bounce,

The occurrence of a shell-crossing singularity signals the
formation of a shock,

A shell-crossing singularity is a weak singularity, and it is possible
to evolve past it in terms of a weak solution [Husain, Kelly, Santacruz, WE, 2022].
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Weak Singularities in LQC

A shell-crossing singularity is a weak singularity: although curvature
invariants diverge, nearby test particles are neither crushed together
nor pushed infinitely far apart.

It has already been shown for homogeneous and isotropic LQC that
weak singularities are not resolved [Singh, 2009]; it is not surprising that
weak singularities persist in other spacetimes as well.

⇒ It will be necessary to allow for weak solutions, and in particular
shock waves, in effective models for quantum gravity.
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Coarse-Graining and Shocks

When studying collective phenomena, whether gases or fluids
composed of many molecules, or regions of spacetime composed of
many quanta of geometry as predicted by LQG, it is typically
necessary to perform some averaging or coarse-graining procedure.

Coarse-graining presupposes the presence of many constituents, and
the same averaging procedure will not necessarily give the same result
for neighbouring regions: there can be discontinuities in
coarse-grained quantities.

1. Shocks in quantum gravity are not surprising if spacetime is
constituted of many quanta of geometry.

2. The existence of shocks in classical GR [Hellaby, Lake, 1985; Nolan, 2003; Lasky, Lun,

Burston, 2007] in fact suggests that spacetime may emerge from a
coarse-graining procedure.
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The Physics of Shocks in Gravity

1. Weak solutions are not unique: additional input is required to
select a preferred solution.

⇒ This can be done be selecting a preferred field variable, say
(Ai

a,E
a
i ).

This requires input from the microscopic theory: this is an
opportunity for quantum gravity.

2. Can we trust the effective equations when describing shocks?
This requires a more detailed analysis, but the (integrated)
equations of fluid dynamics remain valid in the presence of a
shock—information about quantum mechanics or the molecular
constituents of the fluid is not needed.

The same could be true for quantum gravity.
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Summary

⇒ Non-marginally bound solutions: similar results [Cipriani, Fazzini, WE, 2024].

Partial convergence between different approaches to the effective
LQG treatment of LTB spacetimes;

Crushing singularities are resolved by a non-singular bounce;

Weak shell-crossing singularities persist and are guaranteed for
ρ(t0) that is continuous and of compact support;

Shocks can be expected to arise for any theory of quantum
gravity that predicts spacetime emerges through a
coarse-graining of many microscopic degrees of freedom;

Shocks provide a window onto quantum gravity: an extra input
needed to select the correct weak solution.

This input determines the dynamics of shocks [V. Husain’s talk].

Thank you for your attention!
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