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Motivation: Planck Luminosity



Planck luminosity

Observation: in D = 4 spacetime dimensions, the Planck power
(luminosity) is independent of i
mpc? )‘Lg:gc%:l’jj—22
P = = -
tp GD=2

Only in D = 4, can we have a formula

Ppea = Lp X f(scale-independent observables). |

Humanity has come close to observing such power

~ 3,63 x 10°°W,

Q

Zpe ~ 4 x 10°°W.

ak
GW170729
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Take the quadrupole formula (in D = 4) for the emitted power

Fow ~ (1)~

C5 (de)ZRél

Virial theorem links average kinetic energy with potential energy

GM?

Ek:'m, - _%Epot = ]\J(JJQR2 ~

Emission can only happen before forming a black hole, R > 2GM/c?

S (GMY®
% ~ — < Pp.
aw G(CQR) ~ =

Comments:
m If there is such a bound, it can only existin D = 4.
m Likely invisible in perturbative S-matrix approach, where we have

expansion in »x = /8 G/c3.

m Rest of the talk: explore &p in non-perturbative quantum gravity.
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Basic strategy

Register radiation at null surface far away from the sources.

m Quantize null initial data.

m Constraint-free data: shear+corner \ \
data (area density).

vacuum GR
m Truncation: piecewise constant

shear (impulsive waves). )
\

\ GR+matter
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Step 1: Parametrisation of geometry



Null surface geometry

Signature (0++) metric.

OlrGab = qap = dije'ae’y, 0,5 =1,2.
=

Parametrisation of the co-dyad: — i

et = QSime?;).

m Conformal factor Q2 parametrizes
the overall scale.

m SL(2,R)-Holonomy S%,, determines
the shape degrees of freedom.

m Fiducial background dyad e{o), e.g.
(eloy, €2)) = (A0, sin 9dy)

77\(2)
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We consider a null strip ./ with two corners. No unique clock along /.

Convenient choice
Y U=+1

Boundary condition at 04/ = €, U%_, . /

UON, 2,7) = +1,

Affinity proportional to expansion w
a d 8
oYV, = — (Q 2 %92)3?, T

Comments:
m 0% # 0, but 6%, , = 0.

m The clock knows that it has to land at the upper boundary with value
% = +1. The clock is teleological (telos means goal).
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Upon fixing the direction of the null rays, we are left with two constraints.

TN

Raychaudhuri equation: G =0
N 1

d2
215922(22 = —-2(75}(22.

Transport equation for SL(2,R) parallel w
propagator

%s = (¢ + (06X +cc))S.

77 (2)

Note:
m U(1) connection ¢ on /.
m o is the shear (free radiative data) on ..
m The matrices J, X and X are SL(2,R) generators:

J2=-1, [J,X]=-2iX, [X,X]=ilJ.
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Step 2: Symplectic structure (from action)



Gravitational action in D =4

In D = 4, there are two Lorentz scalars that we can build from the
curvature tensor:

Rlw, €] = RaBab [w]eaaeﬁb,
R* [wa e] = %EaﬁuuRaﬁab[W]eyaeub ~ 0.

Note: If the torsionless equation is satisfied, R* vanishes.

In the first-order formalism, there are two coupling constants at linear
order in the curvature,

1
167G

/ d*v [R - lR*] + boundary terms.
M Y

G is Newton’s constant, ~ is the Barbero-Immirzi parameter.
The Barbero-Immirzi parameter is akin to the 6-angle in QCD.
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Phase space and symplectic structure

Symplectic structure © = p dq determines Heisenberg relations [¢, p] = ih.
Starting from the action, we obtain the symplectic structure on ..

Oy = —167:%; . d*v, Q% Tr (JdSS™')+
1
=
1

A% A d*vo @ Tr ((01X + &5 X)DS1S7 ")+

(12
2 2 — 2
A% A d*v, d%(WQ + 201510 )
Key Observations:

m Local SL(2,R) symplectic structure on /.

m First line: initial data for the Raychaudhuri equation.

m Second line: radiative data.

m Third line: Clock variable is conjugate to the constraint.
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Phase space and symplectic structure

Starting from the ~-action, we obtain the symplectic structure on ..

1 2 2 —1
= o Q7 T
O 167G 3/Vd v I‘(Jd]SS )+

_ ﬁ A% A d*vo @ Tr ((01X + &1 X)DS1S7 ")+

d2
2
- / A% A d*v, d%(WQ 120,510 )
Technical remarks:
m Interaction picture: S(%) = exp(f% A%’ p(%")J)S; = A7 St
m Dressed field space derivative: D = d — dl% 7 [Carrozza, Hoehn, Riello,
Gomes, Freidel, Ciambelli, Kabel, Brukner, . ]
m Barbero-Immirzi parameter only appears in corner term.

m Looks innocent but highly non-linear constraint between shear ¢; and
conformal factor Q = Q[oy, Q+].
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Truncation to impulsive null initial data



Impulsive data

Split the shear profile (free radiative data) into sequence of pulses.

m Each pulse represents a quasi-local
graviton.

m Strategy: Quantise each pulse, then
glue many pulses together.

m Full non-linear and non-perturbative
quantization of impulsive data.
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Solving the constraints

We consider a single pulse
%7 =0, or =o1(9, ).
Conformal factor
B (9,90) + B (9, ¢) cos (V20101 %)
2 cos (V205)
EL(9,¢) — E_(0, ) sin (V20151 %)
2 sin (V3017,)

(U0, ¢) =

4_

for initial conditions
QZ(% =+1,9, SD) = E:ﬁ:(ﬁa (p)
SL(2,R) holonomy

1 _
H =ch % 1)1 or X X)) sh o 1
ch (Voror(% +1)) 1+ s (61X +o0r1X)sh (Voro1(% + 1)),
S=e8=¢* HS_, S(U=+1)=25,.
N~

u@)

Double role of shear: euclidean angle in 2, boost angle in H. Recalll

A =T+ ~K, Immirzi parameter mixes euclidean and boost angles.
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Reduced phase space

Pull-back of symplectic potential © , to configurations of a single pulse.
Finite-dimensional mechanical system on each null ray.
)} =16@(z12"),
)} =16@(=12),
z),c(2')} = 2i6% (z]2") L(2),
)} = —16@(z]2) e(2),
N} = 48P (z]2") a(2),
with z = (9, ¢) and
{c(2),U(z)} = XU(2) 6@ (2|2,
{e(2),U(z)} = XU(2) 6 (212),
(L(z),U(z)} = —%JU(z) 5 (z|2).
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Relation between algebra and geometry

Highly non-linear definition of canonical variables.
SL(2,R) holonomy

U=¢" ln(tan(\/ﬁ)/\/ﬁ)‘ls—.
Heisenberg charges

VEL ch (zﬁ)e—i[AJr +27 In(cos(v205))] 7

A tdtay ln(sin(\/m) )]
+ V205

a =

_ VEs > i[
b= 87T’YGsh(2\/aa)e

/
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Area operators and shear operators

Area operators are mere number operators.

E_+ E; =167vG (L + aa),
E_ — E; =16myG (L + bb) .

Shear operator: quotient of the two oscillators

th(2voo) = \/2}

There are operator ordering ambiguities, but they are mild.
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Recurrence relations

One residual constraint

\/E—i_\/_)) —iaabb
Vaa —/ob |

- = 1
ab=—(L+a 2aabbta In
a v (L + aa) V2aa n(2\/§ (

Key Observations:

m Left hand side: ladder operators.

m Right hand side: number operators.

m SL(2,R) Casimir commutes with the constraint.
m This is a simple recurrence relation.
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Critical shear and physical states



SL(2,R) Casimir

Physical states can be classified by the value of the SL(2,R) Casimir.

o101
LZ—CC: % 4—72(E_ —E+)2+
_ % sh®(2VoG)Ey B — %(E+ + E_)*tan®(V205) |.

Discrete series unitary representations: L? > cg, the U(1) generator |L| is
bounded from below, recurrence relations terminate.

Continuous series unitary representations: L? < c¢, the U(1) generator
|L| is unbounded, recurrence relations do not terminate. Physical states
are quantum superpositions that contain caustics.
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Critical value at future null infinity

For small shear, the critical value is

_1 (B- — Ey)*
T 442(Ef+E_ )2+ 4E,E_

+ 0(|oerit]®).

|C"crit. |2

Use Bondi 1/r-expansion to evaluate |o....| near future null infinity.
Note: By = 0(r?), but E_ — E; = 2r(Au)(9, ) + O(r°).
m Bonditime u vs. teleological time %:

oy = —(A“);ﬂ’ 2 ge 1 661,

m Asymptotic shear:

. (0)
Au)(9, ) 0. _
Corit. = ( u)2( 90) c;zt. +@(T’ 2)_

m Critical news:

. (0) 1

Ocrit. = 5= W
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Critical luminosity

L

5
c 2 . (0) |2
Lerit. = R%s d Q|o-((:r)it‘ = 21
2
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Outlook and Summary



Quantum gravity in causal regions

Initial data: three-metric hq, and
extrinsic curvature #°° ~ Kap ~ hap.

Constraints #Z'[h, 7] = 0 and
%.|h, 7] = 0 generate gauge
redundancies on phase space.

Gauge redundancies: states on Xy,
Y, ...are gauge equivalent.

space

Basic idea: Characterize the entire gauge equivalence class [Us,] by
pushing the time-evolution to its extreme.

The boundary of the future Cauchy development of 3; is a null
(light-like) boundary. Quantize gravity at light-like boundary. Problem
simplifies. Less constraints.

[ Ashtekar, Speziale, Reisenberger, Freidel, Donnelly, Ciambelli, Leigh, Geiller, Pranzetti,
..., Donney, Grumiller, Fiorucci, Ruzziconi, ..., Hoehn, Carrozza, ..., Barnich, Prabhu, Chandrasekaran, Flanagan, Compére, ...]
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Key results:
Non-perturbative quantisation of impulsive null initial data.

Quantum geometry includes radiative data and corner data.

Planck power separates discrete and continuous SL(2,R)
representations.

Above the Planck power, states contain caustics. Contradiction with
implicit assumption of smooth .#* above the Planck power.

Window into phenomenology—perhaps.
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