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Introduction

● Many efforts have been made to apply LQG to black hole spacetimes.

● The interest has been revitalized by Ashtekar, Olmedo, and Singh 
(AOS), who introduced a model for nonrotating black holes.

● The interior can be described as a Kantowski-Sachs (KS) spacetime. 

● To go beyond these simple scenarios, we consider perturbation theory.

● We truncate our perturbations at second order in the action.

● Physical perturbations correspond to perturbative gauge invariants.

● We will construct a Hamiltonian formulation for this perturbed system 
and proceed to its hybrid quantization within LQC.



  



  

● Using triad variables, the metric in the interior region is of KS form:

  
● The spatial sections have a volume 

● The geometry has two canonical pairs  of degrees of freedom, with 
connection variables such that 

● We include a (homogeneous) scalar field: 

● This KS background is subject ONLY to the Hamiltonian constraint
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● We consider compact sections with the topology of             
Then, zero-modes are isolated and can be treated exactly.

● We expand our perturbations in products of REAL Fourier modes and 
spherical harmonics.
  

● Spherical harmonics split in polar and axial depending on their 
behavior under parity. 

● A polar harmonic of eigenvalue               for the Laplacian on       has 
parity eigenvalue equal to            Scalar harmonics        are polar.   

● We use a real Regge-Wheeler-Zerilli basis of harmonics. 

● Using capital Latin letters for  -indices, we can decompose any 
symmetric tensor as 
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● For scalars on         we have 

● For covectors,   
  

where we include polar and axial contributions. 

Using the metric       on      and its covariant derivative, we have

which are orthonormalized to 

● Finally, for tensors
 

with

These tensor harmonics are orthonormalized to   
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● We use real spherical harmonics to avoid “reality conditions” on the 
expansion coefficients,

         

● Similarly, for the Fourier expansion on       we employ the real modes
  

Note that the derivative      changes the value of      for

● For simplicity, we will restrict ourselves to AXIAL perturbations with        
The study of polar perturbations can be carried out along similar lines.

● There are no scalar axial perturbations. And we will see that axial 
vector pertubations are pure gauge in our system.   
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● Calling                             we can expand the pertubations of the spatial 
metric, its momentum, and the shift vector as  

● At second order, the contribution of the perturbations to the action is

     

Axial perturbations
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● Considering the KS background as fixed, we can perform a linear 
canonical transformation in the perturbations so that they are 
described by gauge invariant canonical pairs, and by the perturbative 
constraints and variables canonically conjugated to them:   

with generating function

● The perturbative term in the Hamiltonian is changed by the “time” 
variation of this generating function, given by its Poisson bracket with 
the background Hamiltonian  
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● With a suitable redefinition of Lagrange multipliers, the perturbative 
contribution to the action can be written as  

where the new lapse includes quadratic perturbative terms and

● We can now eliminate the cross-terms in the perturbative contribution 
to the Hamiltonian and scale the momenta       by performing a suitable 
background- and mode-dependent linear canonical transformation:

     

Hamiltonian term

P1
ν

∫dt {(N−Ñ )H KS+
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● Since the new transformation is again background-dependent, the 
perturbative term in the Hamiltonian changes by the variation of the 
generating function. In terms of the new variables, we obtain  

● The resemblance with the Hamiltonian of a scalar field in KS suggests 
a new canonical transformation such that the limit of high frequencies 
is well identified. We define
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● Using then the generating function                                                    and

taking into account its background dependence, we obtain the 
following perturbative contribution to the Hamiltonian: 

with the background-dependent mass

● Remarkably, the canonical transformation performed on the 
perturbative variables can be completed on the combined system 
formed by the perturbations and the background. As a consequence, 
the background variables are modified by quadratic perturbative terms.
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● In practice, the action truncated perturbatively at second order can be 
expressed as the background term plus the quadratic perturbative 
contribution, evaluated at the modified background zero-modes. 
Denoting these modified variables with the same symbols as before,

This system is canonical, with physical degrees of freedom contained 
in the background and the gauge invariant perturbations. 

These degrees of freedom are subject only to one GLOBAL constraint, 
which is the homogeneous Hamiltonian constraint corrected with a 
quadratic perturbative contribution. 

     

Total system
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● It is simple to achieve a hybrid quantization of this total system, 
combining a quantum representation for the background and a Fock 
representation for the perturbations.

● For instance, we can adopt a loop representation for the background 
geometry constructed on an extended phase space which contains two 
polymerization parameters,       and       

● It is convenient to scale the triad variables by these parameters,
 

introducing                                  Calling                     we define

and, with them (and using a MMO prescription),

Hybrid quantization
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−N̂−2δ j)]∣ ̂̃p j∣
1 /2
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● In                                          with      and      acting by multiplication and 
                  we adopt the basis                           and define                      
 

● We can then superselect the background geometry and restrict their 
support to semilattices of two units of separation, with point closest to 
the origin at          e.g.   

● We can also quantize the two background factors appearing in the 
Hamiltonian of the perturbations, namely the time factor      and the 
mass       using a symmetric algebraic factor ordering in the      's.   
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⊗L2
(ℝ

3 , d δb d δc dΦ) , δ̂ j
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+ .
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Hybrid quantization
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2
+2Ω̂bΩ̂c+δ̂b

2 ̂̃pb
2
+4∂Φ
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● Finally, we adopt a Fock quantization of the perturbations. 

● We may allow for quite general Fock representations, with annihilation 
and creation variables obtained as background-dependent linear 
combinations of       and         which respect the symmetries of the axial 
perturbations dynamics.

● We further impose that the Heisenberg dynamics of these 
perturbations be unitarily implementable.

● Then, all acceptable Fock quantizations are unitarily equivalent.         

● This family contains the “massless” Fock representation. 

Fock quantization

Q1
ν

P1
ν ,



  



  

● We have considered perturbations around a KS spacetime, 
describing the interior of a nonrotating black hole. 

● We have expanded the perturbations in spherical harmonics and 
Fourier modes. We have restricted our study to axial perturbations. 

● We have truncated the action at second perturbative order and 
constructed a Hamiltonian formulation.

● We have performed a canonical transformation that leads to a system 
composed of zero-modes describing the background, perturbative 
gauge invariants, and perturbative constraints and their momenta.

● There is just a nontrivial, global Hamiltonian constraint on the system. 

● It is the background Hamiltonian corrected with the contribution of the 
perturbative gauge invariants. 



  

● The resulting system can be quantized combining a representation for 
the background and a Fock representation for the perturbations. 

● We have adopted a loop representation for the background geometry.

● Annihilation and creation variables can be formed by background-
dependent linear combinations of the perturbative gauge invariants. 

● This Fock quantization is essentially unique if we require a unitary 
implementation of the associated Heisenberg dynamics.

● Modes with         are pure gauge except if           when we obtain three 
degrees of freedom.

● In future research, we will derive the corrected perturbation equations 
and discuss the relation between modes in the interior and exterior.

l=1 n=0 ,
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