

Updates from Gamma-Rays

Dr Alison Mitchell Junior Research Group Leader, FAU Erlangen-Nürnberg

Synergies in nonthermal astrophysics in Southern Africa 29/07/24

Gamma-ray Astronomy

Non-thermal Astrophysics

FLAMES CATTE PRIASE

The origin of Cosmic Rays?

Supernova Remnants

- Acceleration at shock fronts of SNRs:
 - ~10⁵¹ erg per SN explosion
 - ~10% into proton / CR acceleration
 - ~ 3 events per century in Milky Way
- \rightarrow Would be sufficient to power Cosmic Rays
- Cosmic rays: deflected by magnetic fields
- Interactions produce neutral messengers: gamma-rays & neutrinos point to source
- Motivation for gamma-ray astronomy
 → high energy particles

1 erg = 10⁻⁷ J = 0.62 TeV

R Annu. Rev. Nucl. Part. Sci. 65:245–77

Funk S. 2015.

Searching for the origins of hadronic cosmic rays

 \rightarrow Constrain hadronic vs leptonic emission scenarios

Target molecular material for hadronic interactions? Coincident neutrinos as a smoking gun?

Detection Techniques for Very-High-Energy gamma-rays

Imaging Atmospheric Cherenkov Technique

Extensive Air Shower detection

Key aspect: ability to distinguish gamma-ray initiated EAS from hadronic EAS background

Advances:

- \rightarrow Hillas parameters
- ightarrow Boosted decision trees
- \rightarrow Deep learning approaches, muon tagging, event classes....

Limitations:

Neural network highly sensitive to environmental conditions (e.g. NSB, atmosphere...) → computationally expensive re-training? hadronic interaction model uncertainties

Complementary Facilities

Complementary Facilities

Different techniques \rightarrow different performance

IACTs

WCDs

Satellite

Cross-over energy depends on exposure

Angular resolution deteriorating

Very High Energy Gamma-ray Sky

Very High Energy Gamma-ray Sky

H.E.S.S. Galactic Plane Survey

Pulsars listed in the ATNF

More energetic or closer pulsars dominate TeV detections

Some outliers – likely poor distance estimate or misattributed

Evolutionary stages of pulsar environments

Crab Nebula

Pulsar Wind Nebula – "Standard candle" of TeV gamma-ray astronomy

- First TeV source: Whipple 1989 ٠
- Highest energy photons > 1 PeV ٠
- Brightest VHE gamma-ray source \rightarrow "Crab" units .
- t = 0.94 kyr, $\dot{E} = 4.5 \times 10^{38}$ erg/s, d = 2 kpc

 $E^2 dN / dE [\text{TeV cm}^{-2} \text{ s}^{-1}]$

Ratio to model

28 s

Vela Pulsar

PRAGENCENTREL PRASE

H.E.S.S. collaboration, Nature Astronomy, 7, 1341-1350 (2023)

- Pulsed emission detected up to 20 TeV
- Predominantly from the P2 pulse
- $t = 11 \text{ kyr}, \dot{E} = 7 \times 10^{36} \text{ erg/s}, d = 287 \text{ pc}$

Pulsar Wind Nebulae

• Most numerous source class in the VHE gamma-ray sky

A&A 435, L17-L20 (2005) https://news.ucsc.edu/2020/06/crab-nebula.html

Pulsar Wind Nebulae

AM & Gelfand, Springer, 2022

H.E.S.S. collaboration et al. A&A 621 (2019) A116

Pulsar halos: e.g. Geminga

- First identified at TeV energies by Water Cherenkov Detector HAWC
 Larger field-of-view → less angular size bias
- IACTs such as H.E.S.S. have since put effort into improving analysis sensitivity to extended sources
 - Consistent view of the Galactic Plane (H.E.S.S. & HAWC, ApJ, 917, 2021, 6)
 → several extended sources seen by HAWC now detected in H.E.S.S. data

H.E.S.S. & HAWC Collaborations, ApJ 917 (2021) 6

Pulsar halos: e.g. Geminga

-00

- First identified at TeV energies by Water Cherenkov Detector HAWC
 Larger field-of-view → less angular size bias
- IACTs such as H.E.S.S. have since put effort into improving analysis sensitivity to extended sources
 - Consistent view of the Galactic Plane (H.E.S.S. & HAWC, ApJ, 917, 2021, 6)
 → several extended sources seen by HAWC now detected in H.E.S.S. data
 - Detection of the canonical halo around the Geminga pulsar

latitude

H.E.S.S.

Nature unclear: local SNR, local pulsar....

۲

- Recent measurements of slow diffusion in accelerator vicinity
- Generally need a local source contribution to explain the high energy CR electron spectrum

 $\Delta E \pm 15\%$ due to hadronic interaction model uncertainties

PeVatron candidates

Supernova Remnants, Stellar Clusters...

Search for origins of Galactic Cosmic Rays:

- -- supernova remnants?
- -- Galactic Centre region?
- -- stellar clusters?
- -- escaping CRs interacting with clouds?
- -- Unidentified sources?

H.E.S.S. Collaboration A&A 653 A152 (2021)

HESS Collaboration A&A 666 A124 (2022)

G106.3+2.7 / Boomerang nebula MAGIC collaboration A&A **671**, A12 (2023)

Stellar Clusters and Cygnus Superbubble

Morlino et al. MNRAS 504 (2021) 6096-6105

- Collective stellar winds drive a shock in the interstellar medium
- Requires typically young stellar clusters / massive star forming regions
- Highest energy photon measured to date: 1.42 ± 0.13 PeV → from Cygnus region?
 LHAASO J2032+4102 (Cao et al. Nature 594 (2021) 33-36)
- HAWC Cygnus cocoon (Nature Astro. 5 (2021) 465-471)

Significance (σ)

A. Mitchell ECAP, FAU Erlangen-Nürnberg Updates from gamma-rays

Highest energy gamma-ray sky > 100 TeV

- Sky maps by LHAASO, Tibet-ASγ and HAWC:
- $E_{\gamma} > 100 \text{ TeV}$ ($E_p \sim 1 \text{ PeV}; E_e \sim 183 \text{ TeV}$) $\rightarrow \sim 12 \text{ sources}$
- Cao et al. Nature **594** (2021) 33-36

- Most associated with pulsars
- Generally, pulsars are associated with leptonic emission (e⁺ & e⁻)

Source	Location (l,b)	Detected $> 100 \text{TeV}$ by	Possible Origin
Crab Nebula	(184.557, -5.784)	HAWC, MAGIC, LHAASO, Tibet-AS γ	PSR
HESS J1702-420	(344.304, -0.184)	H.E.S.S.	?
Galactic Centre	(0-1.2, -0.1–+0.1)	H.E.S.S.	SMBH?
eHWC J1825-134	(18.116, -0.46)	HAWC, LHAASO	PSR
LHAASO J1839-0545	(26.49, -0.04)	LHAASO	PSR
LHAASO J1843-0338	(28.722, 0.21)	LHAASO	SNR
LHAASO J1849-0003	(32.655, 0.43)	LHAASO	PSR, YMC
eHWC J1907+063	(40.401, -0.70)	HAWC, LHAASO	SNR, PSR
LHAASO J1929+1745	(52.94, 0.04)	LHAASO	PSR, SNR
LHAASO J1956+2845	(65.58, 0.10)	LHAASO	PSR, SNR
eHWC J2019+368	(75.017, 0.283)	HAWC, LHAASO	PSR, H II/YMC
LHAASO J2032+4102	(79.89, 0.79)	LHAASO	YMC, PSR, SNR?
LHAASO J2108+5157	(92.28, 2.87)	LHAASO	?
TeV J2227+609	(106.259, 2.73)	Tibet-AS γ , LHAASO	SNR, PSRs

UHE leptonic emission & Klein-Nishina effect

$$\Xi_{IC} \equiv \frac{U_{rad}}{U_B}$$

- In high radiation environments, synchrotron cooling dominates over IC losses, even into Klein-Nishina regime. (IC cross-section suppressed)
- Resulting spectrum is harder / cut-off is less pronounced.
- Leptonic spectra out to PeV energies can be observed

Gamma-ray signatures of cosmic rays

→Protons (and heavier nuclei) escape from accelerator – will interact with nearby clouds

→ Predict and search for gamma-rays from clouds identified in radio

 \rightarrow Can use clouds in vicinity of accelerators to probe escape of protons and constrain their presence

Aharonian et al, PRD 101, 083018 (2020)

Unidentified Ultra-High-Energy sources

1LHAASO catalogue

PRIAMEDICENTRE PHYSICS

- In the first LHAASO catalogue many unidentified sources in the galactic plane
- No known accelerator as counterpart
- However often molecular cloud as counterpart
- Example: LHAASO J2108+5157
- Constrain properties of molecular clouds → scan parameter space to constrain potential SNR properties

Gamma-ray emitting binaries:

- \rightarrow Colliding Wind Binaries
- \rightarrow Gamma-ray binaries
- → Microquasars (solar mass BHs)
- \rightarrow Novae

PSR J2032+4127/Be: P ~50yr

X-ray

2016-Aug 2016-Dec 2017-Apr 2017-Aug 2017-Dec 2018-Apr

0.5 3-10 keV

0.0

100

ш

цĹ

ш

0.5

0.0

58200

 $\times 10^{-1}$

0

Energy-dependent emission from the jets of SS433

H.E.S.S. Collaboration, Science, 383, p. 402-406 (2024)

SS 433 microquasar producing powerful jets

H.E.S.S. detection of emission from the outer jets

Indications for an energy-dependence of the emission along the jets

Constrains the particle launch velocity to (0.08 ±0.03)c

Stellar Novae

Novae – outbursts from accreting binary systems (White Dwarf + massive donor):

- (Classical) Novae \rightarrow outbursts from cataclysmic variables
- − Symbiotic Novae \rightarrow red giant / "evolved" donor star
- − Recurrent Novae \rightarrow multiple observed outbursts
- Dwarf Novae \rightarrow mini-outbursts (not thermonuclear)

Thermonuclear explosion ignited on surface of white dwarf

Increase in optical brightness $\Delta m_v \approx 8$ to 15 Typical optical duration weeks to months

$$E_{\rm max} = 1.5 \left| Z \right| \left(\frac{\xi_{\rm esc}}{0.01} \right) \left(\frac{\dot{M} / v_{\rm wind}}{10^{11} \text{ kg m}^{-1}} \right)^{1/2} \left(\frac{u_{\rm sh}}{5000 \text{ km s}^{-1}} \right)^2 \text{ TeV}$$

First Nova in VHE gamma-rays: RS Ophiuchi

Binary of white dwarf and red giant

- Binary system comprised of white dwarf and red giant at ~1.4 kpc distance
- Semi-regular explosions observed since 1898
- Last two: 12^{th} February 2006 and 8^{th} August 2021 reaching $m_v = 4.6$ (cf quiet state $m_v = 12.5$)
- → Detected by H.E.S.S., MAGIC and LST in VHE gamma-rays (Atel 14844)
- Hadronic scenario preferred

H.E.S.S. collaboration Science 376 (2022) 77-80

Gamma-ray flux decay

Optical peak occurred at $T_0 = 59435.25$ (MJD)

VHE gamma-ray flux peak seen by H.E.S.S. is delayed with respect to Fermi-LAT

Consistent decay slope after peak flux is attained

It takes time to reach the theoretical maximum energy

Either: cooling limited (leptonic)

Or: confinement limited (hadronic) until particles become sufficiently energetic to escape the shock

First four VHE GRBs detected by H.E.S.S. & MAGIC between 2018 – 2020 (long GRBs, detected during afterglow phase)

- GRB 180720B, z ~ 0.654 (H.E.S.S.)
- GRB 190114C, z ~ 0.4245 (MAGIC)
- GRB 190829A, z ~ 0.08 (H.E.S.S.)
- GRB 201216C, z ~ 1.1 (MAGIC)

Large distances $z \ge 1 \rightarrow$ severe attenuation due to the Extragalactic background light

Interactions with EBL \rightarrow strongly attenuated spectra

GRB 190114C and EBL absorption

- Synchrotron self-Compton (SSC) component: Necessary or not?
- Absorption by Extragalactic Background Light (EBL)
 → large uncertainties on models
- \rightarrow Need to correct spectrum 10-7 Flux (erg cm⁻² s⁻¹) 10-8 68-110 s 10-9 GBM MAGIO BAT LAT XRT 10-10 10-7 Flux (erg $cm^{-2} s^{-1}$) 10^{-8} 110-180 s 10-9 10-10 10⁶ 10⁹ 10¹² 10^{3} Energy (eV)

Gammapy ($\gamma\pi$) and 3D analysis approaches

3D analysis fitting:

ightarrow enabling multiple components to be simultaneously fit in spatial and energy dimensions

Especially powerful for studies of complex regions or sources with complex morphology

Examples: HESS J1702-420, HESS J1809-193...

https://gammapy.org/

HESS Collaboration A&A 653 (2021) A152

HESS Collaboration A&A 672 (2023) A103

Common formats enable data from multiple instruments to be analysed simultaneously (GADF: <u>gamma-astro-data-formats</u>)

e.g. Multi-instrument fit to the Crab nebula spectrum: calibration source for VHE gamma-rays

Simultaneous 3D fitting of data from multiple instruments e.g. Fermi-LAT and H.E.S.S. for HESS J1813-178 H.E.S.S. collaboration A&A **686** (2024) A149

Majority of extragalactic sources – blazars

First indications of a neutrino source: TXS 0506+056 (z=0.3365) Associated gamma-ray detection of flaring activity by Fermi-LAT & MAGIC Chance coincidence disfavoured at ~3 sigma \rightarrow Multi-messenger astronomy

IC40

2009

log₁₀ p

3

2

IC59

2010

2011

IceCube-170922A

Gaussian Analysis

Box-shaped Analysis

Resolving extension of Centaurus A jets \geq 2.2 kpc

Science **361** (2018) eaat1378 Science **361** (2018) 147-151

2015

2014

2013

2012

2017

2016

20

Dark Matter upper limits from observations of dwarf spheroidal galaxies

Combined likelihood more constraining

Other targets: Galactic centre, Galaxy clusters...

Other DM candidates: Axions \rightarrow modify gamma-ray spectrum via a boost at high energies / reduction in EBL absorption

Future for IACTs

Current generation IACTs continue to make discoveries

 \rightarrow New source classes at TeV energies

First alert from a CTA telescope: LST detects flaring activity from BL Lacertae (Atel 14783, 2021)

Forthcoming IACT facilities:

→ CTA-North La Palma, Spain
→ CTA-South Paranal, Chile
→ ASTRI mini-array Tenerife,

Strengths of IACTs:

- → Good angular and energy resolution
- → Reaction and sensitivity to transient phenomena

Southern Wide-field Gamma-ray Observatory

https://www.swgo.org/

- Ground-based water Cherenkov detectors are well suited to the highest energies and full sky surveys.
- Impressive results from current experiments (HAWC, LHAASO...)
- Future \rightarrow observe the Southern sky
- (Galactic Science for SWGO → E.O. Angüner & AM)

The Shortlisted sites are (in alphabetic order): Argentina: Alto Tocomar ; 24°12'16.22" S, 66°30'29.71" W (4800 m.a.s.l) Chile : Pampa La Bola ; 22°56'41.30" S, 67°40'39.09" W (4770 m.a.s.l) Peru : Imata ; 15°50'40.4" S, 71°03'56.7" W (4500 m.a.s.l) Location shortlist

Outlook

- H.E.S.S. telescopes will continue until 2028
- Call for proposals this autumn for 2025 2028 period
- Ideal opportunity to strengthen ties with other multiwavelength facilities in Africa
- Gamma-ray view of the Southern sky will be enhanced soon by CTA-South (Chile)
 SWGO (Argentina / Chile / Peru → decision this week)
- Looking forward to a constructive week
 → new ideas, new collaborations

Thank you for your attention

