

Redshift Measurement of Gamma-Ray Blazars for the Cherenkov Telescope Array

13-7.6-

Synergies in Non-Thermal Astrophysics in Southern Africa: 29 July – 02 August 2024

Dr. Eli Kasai, Senior Lecturer of Physics, University of Namibia <u>eli.kasai@cta-consortium.org</u> | CTAO Redshift Task Force

OUTLINE

- Overview of CTAO
- Overview of z-Task Force
- Sample selection and observing strategy
- z-measurement and est. of total blazar emission
- Why blazar redshift measurements for CTAO
- Summary

29/07/2024 Synergies in Non-Thermal Astrophysics in Southern Africa

Brief overview of CTAO

Parameter	SSTs	MSTs	LSTs
Count	37	23	4
Diameter (m)	4-6	12	23
Energy range (TeV)	5 - 300	0.15 - 5	0.02 - 0.15

Source: https://www.ctao.org/emission-to-discovery/telescopes/

 The world's largest groundbased observatory for gammaray astronomy at VHE

29/07/2024 Synergies in Non-Thermal Astrophysics in Southern Africa

Brief overview of CTAO

Parameter	SSTs	MSTs	LSTs
Count	37	23	4
Diameter (m)	4-6	12	23
Energy range (TeV)	5 - 300	0.15 - 5	0.02 - 0.15

- The world's largest groundbased observatory for gammaray astronomy at VHE
- CTAO will be ~10 times more sensitive than existing instruments

Brief overview of CTAO

Parameter	SSTs	MSTs	LSTs
Count	37	23	4
Diameter (m)	4-6	12	23
Energy range (TeV)	5 - 300	0.15 - 5	0.02 - 0.15

- The world's largest groundbased observatory for gammaray astronomy at VHE
- CTAO will be ~10 times more sensitive than existing instruments
- Energy range: 20 GeV 300 TeV

Brief overview of CTAO

Parameter	SSTs	MSTs	LSTs
Count	37	23	4
Diameter (m)	4-6	12	23
Energy range (TeV)	5 - 300	0.15 - 5	0.02 - 0.15

- The world's largest groundbased observatory for gammaray astronomy at VHE
- CTAO will be ~10 times more sensitive than existing instruments
- Energy range: 20 GeV 300 TeV
- **Blazars** (next slide) are the main extragalactic targets

Brief overview of CTAO

Parameter	SSTs	MSTs	LSTs
Count	37	23	4
Diameter (m)	4-6	12	23
Energy range (TeV)	5 - 300	0.15 - 5	0.02 - 0.15

- The world's largest groundbased observatory for gammaray astronomy at VHE
- CTAO will be ~10 times more sensitive than existing instruments
- Energy range: 20 GeV 300 TeV
- **Blazars** (next slide) are the main extragalactic targets
- Sites:
 - North: La Palma
 - South: Paranal Obs.

• A sub-class of radio-loud AGNs

Credit: Beckmann and Shrader 2012

29/07/2024 Synergies in Non-Thermal Astrophysics in Southern Africa

- A sub-class of radio-loud AGNs
- Possess powerful relativistic jets aligned near the LOS of an observer

Credit: Beckmann and Shrader 2012

29/07/2024 Synergies in Non-Thermal Astrophysics in Southern Africa

- A sub-class of radio-loud AGNs
- Possess powerful relativistic jets aligned near the LOS of an observer
- Radiation is dominated by nonthermal emission

Credit: Beckmann and Shrader 2012

29/07/2024 Synergie

Synergies in Non-Thermal Astrophysics in Southern Africa

- A sub-class of radio-loud AGNs
- Possess powerful relativistic jets aligned near the LOS of an observer
- Radiation is dominated by nonthermal emission
- Strongly polarized in the radio and optical regimes

Credit: Beckmann and Shrader 2012

29/07/2024 Synergies in Non-Thermal Astrophysics in Southern Africa

- A sub-class of radio-loud AGNs
- Possess powerful relativistic jets aligned near the LOS of an observer
- Radiation is dominated by nonthermal emission
- Strongly polarized in the radio and optical regimes
- Radiation observed to vary across all frequencies on timescales of years, months, days and minutes

29/07/2024

Overview of CTAO Redshift Task Force: Telescopes

29/07/2024

Synergies in Non-Thermal Astrophysics in Southern Africa

eli.kasai@cta-consortium.org

Overview of CTAO Redshift Task Force: Observations

Telescope	Diameter (m)	Instrument	λ coverage (Å) /Filter (CW (Å))	λ / Δλ / FWHM (Å)	Targets observed
SALT	11	RSS	4500 – 7500	~ 1000	38
GTC	10.4	OSIRIS	3650 - 10000	300 - 2500	1 (DDT)
KECK-II	10	ESI	3900 – 10000	~ 10000	29
ESO/VLT	8.2	FORS2	3300 - 11000	260 - 1600	39
ESO/NTT	3.5	EFOSC2	3860 - 8070	~ 500	18
SHANE-3m	3.0	KAST double (B)	3500 - 5600	~ 1000	10
SHANE-3m	3.0	KAST double (R)	5400 - 8000	~ 1500	42
GEMINI	8.0	GMOS	i (7481)	886	2
SOAR	4.1	SAM	i (7481)	886	6
NOT	2.5	ALFOSC	i (7481)	886	17
LESEDI	1.0	Sibonise	R (6470)	1090	44
TJO	0.8	MEIA	R (6470)	1090	30
REM	0.6	REMIR/ROSS	r, H (6231, 16500)	842, 2000	44

29/07/2024 Synergies in Non-Thermal Astrophysics in Southern Africa

eli.kasai@cta-consortium.org

Sample selection and observing strategy

29/07/2024 Synergies in Non-Thermal Astrophysics in Southern Africa

15

• The goal is to search for the stellar absorption features of the host galaxy

- The goal is to search for the stellar absorption features of the host galaxy
- As the host galaxies are usually luminous ellipticals (<u>Urry et al. 2000</u>), the main features that we expect are:
 - 1. CaHK doublet
 - 2. Mgb
 - 3. NalD

29/07/2024 Synergies in Non-Thermal Astrophysics in Southern Africa

- The goal is to search for the stellar absorption features of the host galaxy
- As the host galaxies are usually luminous ellipticals (<u>Urry</u> <u>et al. 2000</u>), the main features that we expect are:
 - 1. CaHK doublet
 - 2. Mgb
 - 3. NaID
- We also search for emission lines such as [O II], [O III], H α and [N II]

- The goal is to search for the stellar absorption features of the host galaxy
- As the host galaxies are usually luminous ellipticals (<u>Urry et al. 2000</u>), the main features that we expect are:
 - 1. CaHK doublet
 - 2. Mgb
 - 3. NalD
- We also search for emission lines such as [O II], [O III], Hα and [N II]
- To measure the redshift convincingly, we require a minimum of two different features yielding the same *redshift* value

- The goal is to search for the stellar absorption features of the host galaxy
- As the host galaxies are usually luminous ellipticals (<u>Urry et al. 2000</u>), the main features that we expect are:
 - 1. CaHK doublet
 - 2. Mgb
 - 3. NaID
- We also search for emission lines such as [O II], [O III], Hα and [N II]
- To measure the redshift convincingly, we require a minimum of two different features yielding the same *redshift* value
- To estimate the total emission of the blazar, we model the spectrum using a power law and elliptical galaxy templates

29/07/2024 Synergies in Non-Thermal Astrophysics in Southern Africa

Some results

 $z = 0.3043 \pm 0.0004$

 $z = 0.2110 \pm 0.0002$

Spectra of 1RXS J015658.6-530208 (left) and 1RXS J020922.2-522920 (right), observed during November and December of 2019, respectively. Goldoni et al. A&A, 650, 106 (2021)

29/07/2024 Synergies in Non-Thermal Astrophysics in Southern Africa

eli.kasai@cta-consortium.org

Some results

PMN J2321-6438, *z* = 0.8126 ± 0.0002

Spectra of PMN J2321-6438, observed during September and October of 2020, respectively. Kasai et al. MNRAS, 518, 2675 (2023)

- PG0900: [OII] of [OII] feature
 - Interpretation: o z ~ 0.812 if [OII] o z ~ 0.349 if [OIII]
- Broad absorption feature at 5000 Å, not consistent with above interpretation
- Broad feature consistent with Mg II feature at z ~ 0.79
- PG1300 observation to verify

٠

Some results

 $z = 0.3171 \pm 0.0002$

 $z = 0.6045 \pm 0.0002$

Spectra of SUMMS J1130.5-780105 (left) and PKS 1424+240 (right), observed during January 2021, March 2022, and during April 2022, respectively. D'Ammando et al. A&A, 683, 222 (2024)

29/07/2024 Synergies in Non-Thermal Astrophysics in Southern Africa

eli.kasai@cta-consortium.org

Key results of spectroscopic papers I, II & III

ltem	Paper I	Paper I Paper II		
Authors & publisher details	Goldoni <i>et al</i> . A&A, 650, 106 (2021)	Kasai <i>et al</i> . MNRAS, 518, 2675 (2023)	D'Ammando <i>et al</i> . A&A, 683, 222 (2024)	
Redshifts measured	11(12)/19	14(15)/25	12(13)/24	
Measured redshift range	0.1116 < <i>z</i> < 0.482	0.0838 < <i>z</i> < 0.8125	0.2223 < <i>z</i> < 0.7018	
Lower limits (LL)	0.449, 0.868, (0.618)	0.3821, 0.6293	0.6185, 0.6347	
Median redshift	0.21 (0.23 incl. LL)	0.37 (0.38 incl. LL)	0.39 (>0.42 incl. LL)	
Host galaxy M_{R}	-22.6 ± 0.4	-22.6 ± 1.0	-22.9 ± 0.6	
Combined median redshift: $z_m = 0.30$				

The primary motivation is to

- compile a special blazar sample with redshifts for the CTAO observations for/to
 - gamma-ray emission modelling
 - VHE BL Lacs cosmological evolution studies
 - extragalactic background light (EBL) density studies
 - constrain the intergalactic magnetic field (IGMF)
 - constrain photo-axion coupling and Lorentz Invariance Violation (LIV) theories

Gamma-ray emission modelling

29/07/2024

Synergies in Non-Thermal Astrophysics in Southern Africa

eli.kasai@cta-consortium.org

EBL density & IGMF, LIV, ALP theory constraints

Credit: J. Biteau & M. Meyer

EBL density & IGMF, LIV, ALP theory constraints

Credit: J. Biteau & M. Meyer

Summary & future work

- New simulations of the blazar candidate sources are under way, which will increase our existing sample size.
- We continue observations and publications: our fourth spectroscopy paper is in preparation.
- Our first imaging paper has been submitted to A&A and reviewed the 1st time resubmission in prep.
- A web database containing our observational results will be made public in the neaf-future.
- We have begun stellar population studies as ancillary science with some of our high S/N spectra.
- Feel free to contact me if you are keen to join us.

Backup slide – SPS ancillary science: preliminary analysis of PKS 0548-322

29/07/2024 Synergies in Non-Thermal Astrophysics in Southern Africa