Nonthermal X-ray Emission with SRG/eROSITA A Biased View towards Pulsars

Martin Mayer – Remeis Observatory Bamberg (FAU) Nonthermal Astrophysics in Southern Africa – 29.07.2024

In collaboration with

Manami Sasaki (FAU), Werner Becker (MPE), Peter Predehl (MPE)

Walter Benjamin-Programm

> **DFG** Deutsche Forschungsgemeinscha

Outline

• The SRG/eROSITA telescope: Mission design and data products

 eROSITA as a survey machine: Searching for new rotationpowered pulsars

eROSITA for single objects: Investigating the extended Vela X pulsar wind nebula

• Summary

The SRG/eROSITA Telescope

- eROSITA: Soft X-ray telescope on German-Russian SRG satellite
 - Original mission goal: 4-year all-sky X-ray survey,
 ~ 25 times deeper than precursor ROSAT
 - ➢ 2.2 years achieved until mission interruption

- eROSITA: Soft X-ray telescope on German-Russian SRG satellite
 - Original mission goal: 4-year all-sky X-ray survey,
 ~ 25 times deeper than precursor ROSAT
 - ➢ 2.2 years achieved until mission interruption
- Telescope specifics:
 - 7 identical telescope modules (TMs) with singlechip CCD detectors

- eROSITA: Soft X-ray telescope on German-Russian SRG satellite
 - Original mission goal: 4-year all-sky X-ray survey,
 ~ 25 times deeper than precursor ROSAT
 - ➢ 2.2 years achieved until mission interruption
- Telescope specifics:
 - 7 identical telescope modules (TMs) with singlechip CCD detectors
 - Energy range 0.2 10 keV
 - Large combined effective area
 - Field of view ~ 1 degree

Predehl et al. 2020

- eROSITA: Soft X-ray telescope on German-Russian SRG satellite
 - Original mission goal: 4-year all-sky X-ray survey,
 ~ 25 times deeper than precursor ROSAT
 - ➢ 2.2 years achieved until mission interruption
- Telescope specifics:
 - 7 identical telescope modules (TMs) with singlechip CCD detectors
 - Energy range 0.2 10 keV
 - Large combined effective area
 - Field of view ~ 1 degree
 - Good spectral resolution (cf. XMM EPIC-pn)

eRASS1 all-sky image Credit: MPE/IKI

eRASS1 all-sky image Credit: MPE/IKI

eROSITA DR1: The First All-Sky Survey (eRASS1)

eROSITA DR1: The First All-Sky Survey (eRASS1)

Searching for Rotation-Powered Pulsars with Fermi-LAT & SRG/eROSITA

Searching for Rotation-Powered Pulsars with Fermi-LAT & SRG/eROSITA & Multiwavelength Followup

Motivation: The Fermi-LAT Source Catalog

Motivation: Identifying Unassociated 4FGL Sources

- Goal: Identify unassociated sources (of pulsar-type) based on their X-ray counterparts
 Precise positions allow for radio/optical confirmation
- Cross-match with eROSITA All-Sky Survey (eRASS:4) Catalog (see Merloni et al. 2024)

Motivation: Identifying Unassociated 4FGL Sources

• Goal: Identify unassociated sources (of pulsar-type) based on their X-ray counterparts

➢ Precise positions allow for radio/optical confirmation

• Cross-match with eROSITA All-Sky Survey (eRASS:4) Catalog (see Merloni et al. 2024)

≻Challenges:

- Large gamma-ray error ellipses (~ 5 arcmin)
- X-ray pulsar counterparts typically faint (~ 10 counts)

Search Strategy: Prior Classification

29.07.2024

Results: Catalog of Pulsar Candidates

- Final cleaned catalog of candidate X-ray pulsar counterparts to Fermi-LAT sources
 - Around 160 candidates with $P_{PSR} > 0.1$
 - Predict ~ 25 new pulsars in top 100 candidate matches
 - Expect similar numbers of young (squares) and millisecond (triangle) pulsars

Clark et al. 2023

Clark et al. 2023

Radio pulsations

Pulse Phase

29.07.2024

Characterizing Nonthermal X-ray Emission from the Vela X Pulsar Wind Nebula

Vela X & The Vela Supernova Remnant

- Vela X: Pulsar wind nebula (PWN) of energetic PSR B0833-45
 - Embedded in very extended Vela SNR
 - Nearby (~ 290 pc; Dodson+03)
 - Age ~ 11 30 kyr (Aschenbach+95, Lyne+96, Espinoza+17)
- eRASS:4 data allow for disentangling thermal & nonthermal X-rays
 - First view of X-ray synchrotron emitting electrons on large scales

Vela X & The Vela Supernova Remnant

- Vela X: Pulsar wind nebula (PWN) of energetic PSR B0833-45
 - Embedded in very extended Vela SNR
 - Nearby (~ 290 pc; Dodson+03)
 - Age ~ 11 30 kyr (Aschenbach+95, Lyne+96, Espinoza+17)
- eRASS:4 data allow for disentangling thermal & nonthermal X-rays
 - First view of X-ray synchrotron emitting electrons on large scales

Vela X & The Vela Supernova Remnant

- Vela X: Pulsar wind nebula (PWN) of energetic PSR B0833-45
 - Embedded in very extended Vela SNR
 - Nearby (~ 290 pc; Dodson+03)
 - Age ~ 11 30 kyr (Aschenbach+95, Lyne+96, Espinoza+17)
- eRASS:4 data allow for disentangling thermal & nonthermal X-rays
 - First view of X-ray synchrotron emitting electrons on large scales

29.07.2024

Analysis: X-ray Spectroscopy

Analysis: X-ray Spectroscopy

- Adaptive Voronoi binning (Cappellari+03)
 - Around 500 spectra with uniform statistics (~ 10⁴ X-ray photons)

Analysis: X-ray Spectroscopy

- Adaptive Voronoi binning (Cappellari+03)
 - Around 500 spectra with uniform statistics (~ 10⁴ X-ray photons)
- Characterize thermal & nonthermal components via spectral modelling
 - Nonthermal flux & photon index, (absorption, plasma temperature, abundances, ...)

Results: Nonthermal Emission

- Vela X in X-rays:
 - Compact PWN core with "jet" and equatorial torus (e.g., Helfand+2001)
 - X-ray synchrotron emission in "Cocoon" visible with ROSAT & XMM (e.g. Markwardt+1995, Slane+2018)

Results: Nonthermal Emission

- Vela X in X-rays:
 - Compact PWN core with "jet" and equatorial torus (e.g., Helfand+2001)
 - X-ray synchrotron emission in "Cocoon" visible with ROSAT & XMM (e.g. Markwardt+1995, Slane+2018)
- ➢Now: Observe much larger size of diffuse synchrotron emission of PWN; radial extent of 2° - 3°

Results: Nonthermal Emission

- Vela X in X-rays:
 - Compact PWN core with "jet" and equatorial torus (e.g., Helfand+2001)
 - X-ray synchrotron emission in "Cocoon" visible with ROSAT & XMM (e.g. Markwardt+1995, Slane+2018)
- ➢Now: Observe much larger size of diffuse synchrotron emission of PWN; radial extent of 2° - 3°

29.07.2024

Results: Particle Diffusion in Vela X

Results: Particle Diffusion in Vela X

Results: Particle Diffusion in Vela X

• Synchrotron emission from relativistic electrons diffusing through ambient medium

$$\mathrm{d}E/\mathrm{d}t \propto -\left(U_B + U_\gamma\right) E^2$$

Synchrotron Inverse Compton

Results: Particle Diffusion in Vela X

• Synchrotron emission from relativistic electrons diffusing through ambient medium

$$\mathrm{d}E/\mathrm{d}t \propto -\left(U_B + U_\gamma\right) E^2$$

Synchrotron Inverse Compton

Characteristic physical extent (Abeysekara+17) limited by energy loss $r_{\rm D} = (4D\tau)^{1/2}$

Results: Particle Diffusion in Vela X

• Synchrotron emission from relativistic electrons diffusing through ambient medium

$$\mathrm{d}E/\mathrm{d}t \propto -\left(U_B + U_\gamma\right) E^2$$

Synchrotron Inverse Compton

- Characteristic physical extent (Abeysekara+17) limited by energy loss $r_{\rm D} = (4D\tau)^{1/2}$
- Spectral softening consistent with radiative energy losses (Tang+12)

Results: Particle Diffusion in Vela X

• Synchrotron emission from relativistic electrons diffusing through ambient medium

$$\mathrm{d}E/\mathrm{d}t \propto -\left(U_B + U_\gamma\right) E^2$$

Synchrotron Inverse Compton

- Characteristic physical extent (Abeysekara+17) limited by energy loss $r_{\rm D} = (4D\tau)^{1/2}$
- Spectral softening consistent with radiative energy losses (Tang+12)
- Assuming ISM B-field: $D = 3.6^{+0.6}_{-0.5} \times 10^{27} \text{ cm}^2 \text{ s}^{-1}$

Results: Multiwavelength View of Vela X

X-ray synchrotron emission originates from TeV-energy electron population

29.07.2024

Martin Mayer - mgf.mayer@fau.de

eROSITA

Results: Multiwavelength View of Vela X

X-ray synchrotron emission originates from TeV-energy electron population ➢No apparent counterpart in the north in TeV & radio bands

TeV emission would be crucial for constraining magnetic field & particle population

Martin Mayer - mgf.mayer@fau.de

Summary

eROSITA all-sky survey data sensitive to nonthermal X-ray emission at E < 2 keV

• Systematic search for new pulsar candidates via Fermi-LAT - eROSITA crossmatch

Candidate catalogue designed for optical/radio followup

Discovery of very extended component in Vela X PWN
 Physical picture unclear without multiwavelength analysis

Mayer et al. (2023), A&A, 676, A68 Mayer & Becker (2024), A&A, 684, A208

Extra Slides Fermi Pulsars

Introduction: Neutron Star Zoo

- Rotation-powered pulsars: Energy for emission supplied by spin-down
 - 0 Young energetic pulsars (e.g. Crab, Vela)
 - Millisecond (,,recycled") pulsars: Small periods due to accretion-induced spin-up
 - Around 3000 known, mostly observed through radio pulsations
 - Magnetospheric emission at X-ray & gamma-ray energies
- "Exotic" types: Magnetars, central compact objects, isolated neutrons stars, ...
- Accretion-powered X-ray binaries

Introduction: Neutron Star Zoo

Zoo of non-accreting neutron stars (Credit: ATNF pulsar database, Manchester et al. 2005)

- Rotation-powered pulsars: Energy for emission supplied by spin-down
 - 0 Young energetic pulsars (e.g. Crab, Vela)
 - Millisecond (,,recycled") pulsars: Small periods due to accretion-induced spin-up
 - Around 3000 known, mostly observed through radio pulsations
 - Magnetospheric emission at X-ray & gamma-ray energies
- "Exotic" types: Magnetars, central compact objects, isolated neutrons stars, ...
- Accretion-powered X-ray binaries

Introduction: Neutron Star Zoo

Zoo of non-accreting neutron stars (Credit: ATNF pulsar database, Manchester et al. 2005)

- Rotation-powered pulsars: Energy for emission supplied by spin-down
 - 0 Young energetic pulsars (e.g. Crab, Vela)
 - Millisecond (,,recycled") pulsars: Small periods due to accretion-induced spin-up
 - Around 3000 known, mostly observed through radio pulsations
 - Magnetospheric emission at X-ray & gamma-ray energies
- "Exotic" types: Magnetars, central compact objects, isolated neutrons stars, ...
- Accretion-powered X-ray binaries

Motivation: High-Energy Pulsars

- Launch of Fermi satellite (2008) greatly increased sensitivity in GeV band
 - Present-day: 340 pulsars detected by Fermi-LAT (Smith et al. 2023)
 - Around 50% young pulsars 50% millisecond pulsars
 - Spider binaries (redbacks, black widows): ms pulsars "consuming" their companions
- Gamma-ray-based selection provides a unique view on pulsar population

Introduction: Pulsar Wind Nebulae

- PWN: Nebula of electrons (& positrons) accelerated in pulsar magnetosphere
 GeV to TeV (PeV?) energies
- Ambient Magnetic field ~ 10⁻⁵ − 10⁻⁴ G
 Synchrotron emission from radio to X-rays
- Ambient radiation field
 - Inverse Compton radiation powers GeV to TeV gamma-rays

Introduction: Pulsar Wind Nebulae

- PWN: Nebula of electrons (& positrons) accelerated in pulsar magnetosphere
 GeV to TeV (PeV?) energies
- Ambient Magnetic field ~ 10⁻⁵ − 10⁻⁴ G
 Synchrotron emission from radio to X-rays
- Ambient radiation field
 - Inverse Compton radiation powers GeV to TeV gamma-rays

Motivation: eROSITA Two-Year Catalog (eRASS:4)

- Cross-match with eROSITA All-Sky Survey (eRASS) Catalog (see Merloni et al. 2024)
 - Use four-survey catalog (eRASS:4) for maximum sensitivity
 - Around three million sources on western Galactic hemisphere (~ 140 sources deg⁻²)
 - Down to $F \sim 2 \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ in } 0.2 2.3 \text{ keV}$

Motivation: eROSITA Two-Year Catalog (eRASS:4)

- Cross-match with eROSITA All-Sky Survey (eRASS) Catalog (see Merloni et al. 2024)
 - Use four-survey catalog (eRASS:4) for maximum sensitivity
 - Around three million sources on western Galactic hemisphere (~ 140 sources deg⁻²)
 - Down to $F \sim 2 \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ in } 0.2 2.3 \text{ keV}$
- Challenges:
 - Large gamma-ray error ellipses (~ 5 arcmin)
 - X-ray pulsar counterparts typically faint (~ 10 counts)

Multiwavelength source properties & probabilistic approach crucial (Salvato et al. 2018)

Search Strategy: Prior Classification

- Improve on pure positional cross-match using basic X-ray & gamma-ray source properties:
 - Use random forest classification on 4FGL source properties to predict probability of PSR/AGN class (e.g. Saz Parkinson et al. 2016)

Search Strategy: Prior Classification

- Improve on pure positional cross-match using basic X-ray & gamma-ray source properties:
 - Use random forest classification on 4FGL source properties to predict probability of PSR/AGN class (e.g. Saz Parkinson et al. 2016)

Efficiently separates PSR/AGN candidates

Precision-Recall Curve

Feature Elimination

	0.92		
	я		
	0.91		
	G 0.50		
	0.89 –		
	Nei Nei		
	₹ 0.88 -	1 7	
	0.87		
	-		
y_Index ^a	-		
_Avg ^a	L		
GeV)	F		
b	9 10 ⁻¹		
gy_1 lux100	rtai		
	iodi		
	Ë		
	F		
	F		
	L		
	Γ		
	10-2		
	E		
r – mgt.mayer@fai	0	# Features	3)

Feature	Importance	Description
SigCombined	0.276	3 log LP_SigCurv ^a - log Variability_Index ^a
ModSigCurv	0.176	$3 \log LP_SigCurv^a - 2 \log Signif_Avg^a$
LP_beta ^a	0.128	
LP_SigCurv ^a	0.109	
K24	0.079	$\frac{2F(1.0-3.0 \text{ GeV}) - F(0.3-1.0 \text{ GeV}) - F(3-30 \text{ GeV})}{2F(1.0-3.0 \text{ GeV}) + F(0.3-1.0 \text{ GeV}) + F(3-30 \text{ GeV})}$
Frac_Variability ^a	0.051	
HR34	0.038	$\frac{F(3-30 \text{ GeV}) - F(1.0-3.0 \text{ GeV})}{F(3-30 \text{ GeV}) + F(1.0-3.0 \text{ GeV})}$
SymLat	0.033	Symmetric Galactic latitude, i.e., b
EFluxErr	0.032	log Unc_Energy_Flux100 ^a - 0.4 log Energy_Flux100 ^a
Variability_Index ^a	0.031	
HR45	0.024	$\frac{F(30-1000 \text{ GeV}) - F(3-30 \text{ GeV})}{F(30-1000 \text{ GeV}) + F(3-30 \text{ GeV})}$
PL_Index ^a	0.021	

Martin Mayer

Martin Mayer – mgf.mayer@fau.de

58 / 20

Search Strategy: Multiwavelength Fluxes

- Improve on pure positional cross-match using basic X-ray & gamma-ray source properties:
 - Constrain expected X-ray flux based on observed flux distribution of pulsars (young and millisecond) and blazars
 - Implies many pulsar counterparts below X-ray detection limit

Mayer & Becker 2024

Search Strategy: Multiwavelength Fluxes

Mayer & Becker 2024

- Improve on pure positional cross-match using basic X-ray & gamma-ray source properties:
 - Constrain expected X-ray flux based on observed flux distribution of pulsars (young and millisecond) and blazars
 - ➤ Implies many pulsar counterparts below X-ray detection limit

Visual Inspection

Visual Inspection

Verification of Probabilities

29.07.2024

Prediction of expected detections

Followup example: PSR J1803–6707 in eRASS1

Gaia Sources \bigcirc \bigcirc \odot \bigcirc eRASS1 Position 19th mag Counterpart \bigcirc 0 \bigcirc 0 10"

Followup example: PSR J1803–6707 in eRASS1

Gaia Sources \bigcirc \bigcirc \circ \bigcirc eRASS1 Position 19th mag Counterpart \bigcirc 0 \bigcirc 0 10"

Redback binary pulsar (Clark et al. 2023)

- 2.1 ms spin period
- 9.1 h orbital period
- $M_{Companion} > 0.26 M_{\odot}$

Redback binary pulsar (Clark et al. 2023)

- 2.1 ms spin period
- 9.1 h orbital period
- $M_{Companion} > 0.26 M_{\odot}$
- γ-ray & radio pulsations from pulsar

Radio pulsations (Clark et al. 2023)

Pulse Phase

Redback binary pulsar (Clark et al. 2023)

- 2.1 ms spin period
- 9.1 h orbital period
- $M_{Companion} > 0.26 M_{\odot}$
- γ-ray & radio pulsations from pulsar

29.07.2024

Pulse Phase

Redback binary pulsar (Clark et al. 2023)

- 2.1 ms spin period
- 9.1 h orbital period
- $M_{Companion} > 0.26 M_{\odot}$
- γ-ray & radio pulsations from pulsar
- ➢Orbital modulation in the optical

29.07.2024

Redback binary pulsar (Clark et al. 2023)

- 2.1 ms spin period
- 9.1 h orbital period
- $M_{Companion} > 0.26 M_{\odot}$
- γ-ray & radio pulsations from pulsar
- ➢Orbital modulation in the optical

≻(No X-ray pulsations yet)

29.07.2024

Math

 Probabilistic matching similar to NWAY (Salvato et al. 2018), and using Bayesian approach of Budavari & Szalay (2008)

$$P_{i}^{t} = \frac{\rho_{i}^{t}}{\bar{c} + \sum_{i} \sum_{t} \rho_{i}^{t}}, \text{ with}$$

$$\rho_{i}^{t} = P_{\gamma}^{t} \frac{\phi_{t}(\log F_{X} | \log F_{\gamma})}{\phi_{B}(\log F_{X})} \frac{\exp\left(-\frac{1}{2}\boldsymbol{\psi}^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}\boldsymbol{\psi}\right)}{2\pi\nu(\mathbf{x})\sqrt{|\boldsymbol{\Sigma}|}}$$

$$\bar{c} = 1 - \sum_{t} P_{\gamma}^{t} \int \phi_{t}(\log F_{X} | \log F_{\gamma}) d\log F_{X},$$

Math

• Probabilistic matching similar to NWAY (Salvato et al. 2018), and using Bayesian approach of Budavari & Szalay (2008)

Prior incompleteness

Math

2.5

-12.0

-12.0

Field model

Extra Slides Vela X

Analysis: Imaging & Morphology

- Complex energy-dependent morphology with multiple components
 - Soft band: Diffuse shell & thick tangential filaments
 - Medium band: Thin radial fingers & clumps
 - Hard band: Nonthermal emission from Vela X & Vela Jr.

Analysis: Imaging & Morphology

- Complex energy-dependent morphology with multiple components
 - Soft band: Diffuse shell & thick tangential filaments
 - Medium band: Thin radial fingers & clumps
 - Hard band: Nonthermal emission from Vela X & Vela Jr.

Imaging & Morphology

- Complex energy-dependent morphology with multiple components
 - Soft band: Diffuse shell & thick tangential filaments
 - Medium band: Thin radial fingers & clumps
 - Hard band: Nonthermal emission from Vela X & Vela Jr.

Spectral model

Absorbed plasma in NEI + nonthermal component

TBabs*(vpshock+powerlaw) + backgrund

≻Photon index in region 2 too steep ($\Gamma = 4$)

 \succ Hard to constrain kT, τ individually

eROSITA

Spectral model

Two absorber plasmas + nonthermal component

TBabs*(vapec+vapec+powerlaw) + background

Mean plasma temperature more well-defined

eROSITA

Fits with NEI Plasma

29.07.2024

Results: Absorption & Plasma Temperature

Results: Absorption & Plasma Temperature

Results: Intervening ISM

Results: Intervening ISM

Optical Extinction towards Vela (StarHorse, *Anders+22*)

Results: Intervening ISM

Results: Foreground Absorption

Results: Foreground Absorption

Mayer et al. 2023

Results: ISM & Ejecta

cm

29.07.2024

Martin Mayer – mgf.mayer@fau.de

Neon 1.8 1.6 1.4 1.2 $1.0 \frac{\mathrm{H}}{\mathrm{O}}$ 0.8 0.6 0.4 0.2 0 0 0.0 5.0 Iron 4.5 4.0 3.5 3.0 $2.5\,\mathrm{W}$ 2.0 1.5 1.0 0.5 0 0

89 / 20

5.0

4.5

4.0

3.5

3.0

2.0

1.5

1.0

0.5

0.0

5.0

4.5

4.0

3.5

3.0

2.0

1.5

1.0

0.5

<u>0.0</u>. TA

 $^{2.5}
m H/_{e}H$

2.5 N

• Correlated abundance peaks of oxygen, neon, magnesium

- Correlated abundance peaks of oxygen, neon, magnesium
 - ➢Iron distribution independent from lighter elements

- Correlated abundance peaks of oxygen, neon, magnesium
 - ➢Iron distribution independent from lighter elements
 - ➢General pattern: Ne/O, Mg/O supersolar
 - Not reproduced in nucleosynthesis models (Sukhbold+16)

• Correlated abundance peaks of oxygen, neon, magnesium

- Correlated abundance peaks of oxygen, neon, magnesium
 - ➢Iron distribution independent from lighter elements

• Correlated abundance peaks of oxygen, neon, magnesium

> ➢Iron distribution independent from lighter elements

➢General pattern: Ne/O, Mg/O supersolar

Reproducable in lowmetallicity model? (Nomoto+06)

98 / 20

29.07.2024

101 / 20

29.07.2024

102 / 20

Hot light-element ejecta at the apex; cooler shocked ISM along the sides

Shrapnel D: Simulations (Miceli et al. 2013)

Miceli+13: Simulation of an ejecta clump protruding into the unshocked ISM

>Unexpected temperature structure?

29.07.2024

Comparison with ROSAT (Lu & Aschenbach, 2000)

More Ejecta Clumps

29.07.2024

More Ejecta Clumps

29.07.2024

More Ejecta Clumps

29.07.2024

Martin Mayer - mgf.mayer@fau.de

110 / 20

Spectrum at the shock front

29.07.2024

Martin Mayer - mgf.mayer@fau.de

Spectrum at the shock front

Spectrum at the shock front

29.07.2024

Martin Mayer - mgf.mayer@fau.de

113 / 20

M1

M2

Nonthermal Photon Index & Surface Brightness

Bayesian Evidence in Favor of Nonthermal Emission

