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Dark Matter in the Galactic center é‘\\:“}fﬁé‘;ﬁ"g‘ﬁ"oﬁiﬁf‘cie

e Dark matter annihilation signal in a Milky Way-like galaxy
o Galactic center is the strongest possible source of DM annihilation

Via Lactea Il, Kuhlen et al, Science, 325 (2009)
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Galactic center excess ‘f}‘;

e Detected two months after the Fermi-LAT gamma-ray data became
public
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e Spherical morphology — dark matter annihilation?
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Possible interpretations ‘@g

literature t galactic center excess or t dark matter annihilation galactic center
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Millisecond pulsars (MSPs)
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e Fast-rotating pulsars often found in binaries
e Spin up due to accretion from the companion
o Can emit gamma-rays for billions of years

Image credit: NASA

e A population of MSPs near the GC from disrupted globular clusters
can fit the spatial profile and energy spectrum
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Are there enough MSPs? ‘f}%

e Hooper & Linden (2016)
o Study the gamma-ray flux from globular clusters (dominated by MSPs)
e Model the MSP luminosities

e Can account for 30%, but 10 — 50 MSPs should have been detected by
Fermi LAT near the GC

o Taking into account spin-down evolution gives ~ 2% of GCE

e Haggard et al. (2017)
e Low mass X-ray binaries (progenitors of MSPs) STXE

10+ + Unclassified

e LMXBs detected with INTEGRAL near GC \

e <14% (28%) of GCE can be attributed
to MSPs at 95% confidence taking
into account only LMXBs
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e There are 4 MSPs and 8 globular clusters 1o} _
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Ballet et al. (2023) Haggard et al., JCAP 056 (2017)



Statistical and DNN methods e}\; o

e Main idea: point-like sources give larger fluctuations than Poisson
fluctuations for smooth diffuse emission
o Typically favor MSP interpretation of GCE

e Filtering — wavelets = I
Bartels et al. (2016), Zhong et al. (2020) e e SO
o Statistical i e
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e Non-poissonian templates
Bartels et al., PRL 116 (2016)

Lee et al. (2015, 2016)
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Calore et al. (2021), Manconi et al. (2024)
» However, sensitive to diffuse | L ) o
emission uncertainties i
Leane & Slatyer (2019, 2020, 2020) T e et n Jg/;“g”gl?zo15)
e Deep learning

List et al. (2020), Mishra-Sharma & Cranmer (2022)
o However, “mind the gap”, Caron et al. (2023)

Dmitry Malyshev, MSPs vs DM annihilation near the GC List et al" PRL 24 (2020) 7



Unassociated sources near the GC? ‘f}\;

e Challenges
o Population studies rely on associated sources (mostly bright)
o Statistical methods determine an overall dN/dS distribution of sources
including sources below the detection threshold but
— not specific to MSPs
— use integrated spectrum in a large energy bin
e However, there are many unassociated Fermi-LAT sources (200
within 10° from the GC)
o Can we use them to learn something about the population of MSPs near
the GC

e This work
o Use machine learning (ML) trained on associated sources to classify
unassociated sources near the GC

o Test the MSP hypothesis



ML classification of Fermi-LAT sources ‘f}‘;

e Many physical classes (> 20)

Challenges in going beyond two classes

e Some classes are small (> 10 classes have < 10 associated sources)

o Malyshev & Bhat, MNRAS 521 (2023)

e This work: 5-class classification (dominated by FSRQs, BL Lacs, pulsars,

Separate classes in large groups with similar properties

supernova remnants + pulsar wind nebulae, and MSPs)

Input features:

e spectral parameters, variability,
source significance

e NoO source coordinates

Classification: random forest
(also tested neural networks)
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Probabilistic classification AN e

ML: input features (X) — class probabilities p(Y)

Use class probabilities, e.g., to determine the expected number of
MSP-like sources among the unassociated ones within 10° from the

GC: ;
Nmsp = E  DMsp
t€unas, <10°

which gives ~76 MSP-like sources expected near the GC

There are 200 unassociated and 94 associated sources within 10°
from the GC

If we sum over unassociated sources in flux bins, then we can
determine the expected number of MSP-like sources as a function of
flux



Source count of MSPs near the GC ‘f}‘;

e Calculate expected number of MSPs within 10° from the GC as a
function of energy flux above 100 MeV
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e Using probabilistic classification, we can also determine the expected
spectrum from the MSP-like unassociated sources

Fuse(E)= ) puspFi(E)

t€unas, <10°

e |t's a factor 3 below Lo
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Detection threshold
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e Most of flux comes from MSPs below detection threshold, even in
models dominated by bright MSPs
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Radial profile AN cpneencoe,
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e Calculate intensity at 2 GeV in rings around the GC

1 .
Iusp(6) = 4 > piiapFi(E =2 GeV)

t€unas, 0,€(01, 62)

e The profile is consistent
with gNFW profile within
about 10° from the GC  —

e Dominated by a spherical
distribution of PS
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Radio searches for MSPs
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e Can we prove that the MSP candidates determined by machine
learning are actually MSPs?

ERLANGEN CENTRE

o Detection of pulsed emission with radio telescopes is needed!
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Calore et al, Apd 827 (2016)

15



Radio flux and dispersion
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e Two main limiting factors:
e radio flux;

o dispersion that smears the pulsed radio emission.
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Expected detections in a survey

e Survey 108 deg? around the GC
o Bottom row: expected number of MSPs in the bulge (Galactic plane)

Radio searches for bulge MSPs from Fermi diffuse observations

Parameters HTRU (mid) GBT MeerKAT SKA-mid
v [GHz] 1.35 14 1.4 1.67
Av [MHz] 340 600 1000 770
tsamp [us] 64 41 41 41
Avehan [kHz] 332 293 488 376
Ty [K] 23 23 25 25
G [K/Jy] 0.74 2.0 2.9 15
Max. Base. Used [km] — = 1.0 0.95
Eff. G sub-array [K/Jy] 0.74 2.0 2.0 8.5
Ele. Opwum [arcmin] 14 8.6 65 49
Ele. FoV [deg?] 0.042  0.016 0.92 0.52
Beam OpwuMm [arcmin] 14 8.6 0.88 0.77
Beam FoV [deg?] 0.042  0.016 0.00017 0.00013
# Beams 13 1 3000 3000
Eff. FoV [deg?] 0.55  0.016 0.51 0.39
Tpoint [min] 9 20 20 20
T108 deg? [h] 29 2250 71 92
# Bulge(Foreground) MSPs 1(6) 34(37) 40(41) 207(112)
Table 3

Calore et al, ApJ 827 (2016)



Monte Carlo of detections ‘f}‘;

e Possible MSP detections for disk (blue) and bulge (black) MSPs for

MeerKAT (left plot) and SKA-mid (right plot)
o SKA s expected to detect a lot of MSPs, but the number of possible

detections for MeerKAT is already quite good
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Calore et al, ApJ 827 (2016)



Targeted observations ‘f}‘;

e Instead of a survey, one can target high probability MSP candidates
determined, e.g., using ML methods
o Several MSPs can be detected with MeerKAT and SKA-mid after a few
tens of hours of observations

Instrument ¢, Detection of MSP candidates
total Probability Number (20 total)
GBT 20h 18.4% 3.7
MeerKAT  20h 20.5% 4.1
SKA-mid 20 h 40.8% 8.2
Table 4

Projected number of detections for follow-up radio searches in 20
MSP candidates, assuming that all of the MSP candidates are
indeed gamma-ray luminous MSPs in the bulge region. The radio
luminosity of gamma-ray luminous MSPs is estimated from a flux
limited sample of high-latitude MSPs and unassociated sources.
Although the results were obtained in an observation-driven
approach, they are uncertain by at least a factor of two and of
indicative value only. Caveats are discussed in the text.

Calore et al, ApJ 827 (2016)
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Probabilistic catalogs AN e

e Class probabilities for all sources
e including the associated ones — obtained from testing datasets

e Based on 4FGL-DR3
o Malyshev & Bhat, MNRAS 521 (2023), arXiv:2301.07412
e Construction of multi-class classification, 6 or 9 classes
e https://zenodo.org/records/7538664

e Based on 4FGL-DR4
o Malyshev, RASTI 2 (2023), arXiv:2307.09584
o Effect of covariate shift, 6 classes
e https://zenodo.org/records/10452672

e Based on 4FGL-DRA4 (still preliminary!)
« Malysheyv, arXiv:2401.04565
e No coordinate features, no BCU or SPP classes in training, 5 classes
e Application for MSPs near the GC
e https://zenodo.org/records/10458464
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e Machine learning methods have been used to determine MSP-like
candidates near the GC

o The spatial and spectral . | =
distribution of the MSP-like | R
sources is consistent with the “§30A
MSP interpretation of the 2
Galactic center excess = 101

e Radio observations with MeerKAT s Y
and SKA can detect a few Wt (erg em 7s™)

Malyshev, arXiv:2401.04565
MSPs near the GC after a few tens —

up to ~ 100 hours of observations
o Radio detection of MSPs can

support the MSP hypothesis of
the GCE

z [kpc]

Bulge MSPs
| Disk MSPs
% Earth

z [kpc]

Calore et al, ApJ 827 (2016)



