Galactic center GeV excess: dark matter annihilation vs millisecond pulsars

ERLANGEN CENTRE For Astroparticle Physics

Dmitry Malyshev

Synergies in Non-Thermal Astrophysics, 29.07 – 02.08 2024

Dark Matter in the Galactic center

- Dark matter annihilation signal in a Milky Way-like galaxy
 - Galactic center is the strongest possible source of DM annihilation

Via Lactea II, Kuhlen et al, Science, 325 (2009)

Galactic center excess

Preliminary

Vitale & Morselli arxiv:0912.3828

104

 Detected two months after the Fermi-LAT gamma-ray data became public

• Spherical morphology – dark matter annihilation?

Possible interpretations

NSPIRE	literature V t galactic center excess or t dark matter annihilation galactic center							
		Literature	Authors	Jobs	Seminars	Conferences	More	
Date of paper	147 results	; ∣ 📑 cite all				Citation Summary 🔵 🛛	Most Cited ∨	
Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Stress Telescope Dan Hooper (Fermilab and Chicago U., Astron. Astrophys. Ctr.), Lisa Goodenough (New York U.) (Oct, 20 Published in: Phys.Lett.B 697 (2011) 412-428 + e-Print: 1010.2752 [hep-ph]								
2010 2024	🔓 pdf	ତି links 🕝 [DOI ⊡ cite	🔁 claim		a reference search		
Number of authors Single author 14 10 authors or less 139	From Da from Da Kevork N. Published ph.HE]	n of a Gamma- rk Matter Annih Abazajian (UC, Irvii in: <i>Phys.Rev.D</i> 86 (2001	Ray Source in illation and Co ne), Manoj Kaplin (2012) 083511, P ite 🛛 claim	the Galactic ncentrated A ghat (UC, Irvine) hys.Rev.D 87 (2	Center Consis astrophysical I) (Jul, 2012) 2013) 129902 (e	stent with Extended Emission rratum) • e-Print: 1207. 反 reference search	 d Emission #2 6047 [astro- €) 556 citations 	
Exclude Review of Particle Physics	The Fer Fermi-LA Published	mi Galactic Cen Collaboration • M. in: Astrophys.J. 84	ter GeV Exces Ackermann (DES 0 (2017) 1, 43 • e	s and Implica Y, Zeuthen) et a e-Print: 1704.03	ations for Dark al. (Apr 12, 2017) 3910 [astro-ph.H	k Matter 	#3	
Document Type	🔓 pdf	& DOI ⊡ ci	ite 🗟 claim			c reference search	\bigcirc 423 citations	
 article published ⑦ review 	Strong s Richard B Amsterda Published	Support for the r artels (U. Amsterda m, GRAPPA and Mu in: Phys.Rev.Lett. 1	millisecond pu m, GRAPPA), Sura Inich, Max Planck 116 (2016) 5, 051	Isar origin of aj Krishnamurthy Inst.) (Jun 16, 2 102 ∙ e-Print: 1	the Galactic (y (U. Amsterdam 2015) 1506.05104 [astr	center GeV excess , GRAPPA), Christoph W ro-ph.HE]	#4 'eniger (U.	
Author	🔓 pdf	ළු links ළු [DOI [→ cite	🗟 claim		c reference search		

Millisecond pulsars (MSPs)

- Fast-rotating pulsars often found in binaries
 - Spin up due to accretion from the companion
 - Can emit gamma-rays for billions of years
- A population of MSPs near the GC from disrupted globular clusters can fit the spatial profile and energy spectrum

Image credit: NASA

Are there enough MSPs?

- Hooper & Linden (2016)
 - Study the gamma-ray flux from globular clusters (dominated by MSPs)
 - Model the MSP luminosities
 - Can account for 30%, but 10 50 MSPs should have been detected by Fermi LAT near the GC
 - Taking into account spin-down evolution gives $\sim 2\%$ of GCE
- Haggard et al. (2017)
 - Low mass X-ray binaries (progenitors of MSPs)
 - LMXBs detected with INTEGRAL near GC
 - < 14% (28%) of GCE can be attributed to MSPs at 95% confidence taking into account only LMXBs (LMXBs + unclassified sources)
- There are 4 MSPs and 8 globular clusters within 10° from the GC in 4FGL-DR4 Ballet et al. (2023)

Haggard et al., JCAP 056 (2017)

Statistical and DNN methods

- Main idea: point-like sources give larger fluctuations than Poisson fluctuations for smooth diffuse emission
 - Typically favor MSP interpretation of GCE
- Filtering wavelets Bartels et al. (2016), Zhong et al. (2020)
- Statistical
 - Non-poissonian templates Lee et al. (2015, 2016)
 - 1pt PDF

Calore et al. (2021), Manconi et al. (2024)

- However, sensitive to diffuse emission uncertainties Leane & Slatyer (2019, 2020, 2020)
- Deep learning

List et al. (2020), Mishra-Sharma & Cranmer (2022)

• However, "mind the gap", Caron et al. (2023)

Lee et al., JCAP 5 (2015)

List et al., PRL 24 (2020)

Dmitry Malyshev, MSPs vs DM annihilation near the GC

- Challenges
 - Population studies rely on associated sources (mostly bright)
 - Statistical methods determine an overall dN/dS distribution of sources including sources below the detection threshold but
 - not specific to MSPs
 - use integrated spectrum in a large energy bin
- However, there are many unassociated Fermi-LAT sources (200 within 10° from the GC)
 - Can we use them to learn something about the population of MSPs near the GC
- This work
 - Use machine learning (ML) trained on associated sources to classify unassociated sources near the GC
 - Test the MSP hypothesis

- Challenges in going beyond two classes
 - Many physical classes (> 20)
 - Some classes are small (> 10 classes have < 10 associated sources)
- Separate classes in large groups with similar properties
 - Malyshev & Bhat, MNRAS 521 (2023)
 - This work: 5-class classification (dominated by FSRQs, BL Lacs, pulsars, supernova remnants + pulsar wind nebulae, and MSPs)
- Input features:
 - spectral parameters, variability, source significance
 - No source coordinates
- Classification: random forest (also tested neural networks)

- ML: input features $(X) \rightarrow class \text{ probabilities } p(Y)$
- Use class probabilities, e.g., to determine the expected number of MSP-like sources among the unassociated ones within 10° from the GC:

$$N_{
m MSP} = \sum_{i\in {
m unas},\,<10^\circ} p^i_{
m MSP}$$

which gives ~76 MSP-like sources expected near the GC

- There are 200 unassociated and 94 associated sources within 10° from the GC
- If we sum over unassociated sources in flux bins, then we can determine the expected number of MSP-like sources as a function of flux

Source count of MSPs near the GC

 Calculate expected number of MSPs within 10° from the GC as a function of energy flux above 100 MeV

 Using probabilistic classification, we can also determine the expected spectrum from the MSP-like unassociated sources

$$F_{\mathrm{MSP}}(E) = \sum_{i \in \mathrm{unas}, <10^{\circ}} p^{i}_{\mathrm{MSP}} F_{i}(E)$$

- It's a factor 3 below the typical GCE spectra
- Similar to remaining GCE after a model of FBs has been subtracted

Detection threshold

 Most of flux comes from MSPs below detection threshold, even in models dominated by bright MSPs

Radial profile

• Calculate intensity at 2 GeV in rings around the GC

 $I_{\rm MSP}(\theta) = \frac{1}{\Omega} \sum_{i \in \text{unas, } \theta_i \in (\theta_1, \ \theta_2)} p^i_{\rm MSP} F_i(E = 2 \text{ GeV})$

 10^{-1} • The profile is consistent -1 Sr with gNFW profile within 10^{-6} about 10° from the GC I/dE (GeV cm 10^{-7} Dominated by a spherical distribution of PS 10^{-8} II quadrants (Unas → msp+) North + South (Unas \rightarrow msp+) At larger angles the East + West (Unas \rightarrow msp+) Brandt & Kocsis (2015) / 3 о 2 10⁻⁹ population of MSPs Ackermann+ (2017) (NFW annihilation) / 3 Ackermann+ (2017) (gNFW $\gamma = 1.25$) / 3 Ackermann+ (2017) (MSP-like) / 3 in the Galactic plane 15 20 25 30 35 5 10 40 dominates the emission θ (deg)

Malyshev, arXiv:2401.04565

Radio searches for MSPs

- Can we prove that the MSP candidates determined by machine learning are actually MSPs?
 - Detection of pulsed emission with radio telescopes is needed!

Radio flux and dispersion

- Two main limiting factors:
 - radio flux;
 - dispersion that smears the pulsed radio emission.

Calore et al, ApJ 827 (2016)

• Survey 108 deg² around the GC

• Bottom row: expected number of MSPs in the bulge (Galactic plane)

Radio searches for bulge MSPs from Fermi diffuse observations

Parameters	HTRU (mid)	GBT	MeerKAT	SKA-mid
$\nu [{ m GHz}]$	1.35	1.4	1.4	1.67
$\Delta u [m MHz]$	340	600	1000	770
$t_{ m samp} [\mu { m s}]$	64	41	41	41
$\Delta u_{ m chan} \; [m kHz]$	332	293	488	376
$T_{ m rx}$ [K]	23	23	25	25
$G [{ m K}/{ m Jy}]$	0.74	2.0	2.9	15
Max. Base. Used [km]	_	—	1.0	0.95
Eff. G sub-array $[K/Jy]$	0.74	2.0	2.0	8.5
Ele. $\theta_{\rm FWHM}$ [arcmin]	14	8.6	65	49
Ele. FoV $[deg^2]$	0.042	0.016	0.92	0.52
Beam $\theta_{\rm FWHM}$ [arcmin]	14	8.6	0.88	0.77
Beam FoV $[deg^2]$	0.042	0.016	0.00017	0.00013
# Beams	13	1	3000	3000
Eff. FoV $[deg^2]$	0.55	0.016	0.51	0.39
$T_{ m point}$ [min]	9	20	20	20
$T_{108{ m deg}^2}$ [h]	29	2250	71	92
# Bulge(Foreground) MSPs	1(6)	34(37)	40(41)	207(112)

Table 3

Monte Carlo of detections

- Possible MSP detections for disk (blue) and bulge (black) MSPs for MeerKAT (left plot) and SKA-mid (right plot)
 - SKA is expected to detect a lot of MSPs, but the number of possible detections for MeerKAT is already quite good

Calore et al, ApJ 827 (2016)

- Instead of a survey, one can target high probability MSP candidates determined, e.g., using ML methods
 - Several MSPs can be detected with MeerKAT and SKA-mid after a few tens of hours of observations

Instrument	$t_{ m obs}$	Detection of MSP candidates			
	total	Probability	Number (20 total)		
GBT	$20\mathrm{h}$	18.4%	3.7		
MeerKAT	$20\mathrm{h}$	20.5%	4.1		
SKA-mid	$20\mathrm{h}$	40.8%	8.2		

Table 4

Projected number of detections for follow-up radio searches in 20 MSP candidates, assuming that all of the MSP candidates are indeed gamma-ray luminous MSPs in the bulge region. The radio luminosity of gamma-ray luminous MSPs is estimated from a flux limited sample of high-latitude MSPs and unassociated sources. Although the results were obtained in an observation-driven approach, they are uncertain by at least a factor of two and of indicative value only. Caveats are discussed in the text.

Probabilistic catalogs

- Class probabilities for all sources
 - including the associated ones obtained from testing datasets
- Based on 4FGL-DR3
 - Malyshev & Bhat, MNRAS 521 (2023), arXiv:2301.07412
 - Construction of multi-class classification, 6 or 9 classes
 - https://zenodo.org/records/7538664
- Based on 4FGL-DR4
 - Malyshev, RASTI 2 (2023), arXiv:2307.09584
 - Effect of covariate shift, 6 classes
 - <u>https://zenodo.org/records/10452672</u>
- Based on 4FGL-DR4 (still preliminary!)
 - Malyshev, arXiv:2401.04565
 - No coordinate features, no BCU or SPP classes in training, 5 classes
 - Application for MSPs near the GC
 - https://zenodo.org/records/10458464

Conclusions

- Machine learning methods have been used to determine MSP-like candidates near the GC
 - The spatial and spectral distribution of the MSP-like sources is consistent with the MSP interpretation of the Galactic center excess
- Radio observations with MeerKAT and SKA can detect a few MSPs near the GC after a few tens up to ~ 100 hours of observations
 - Radio detection of MSPs can support the MSP hypothesis of the GCE

Calore et al, ApJ 827 (2016)

21