Fermi + HESS analysis on the Crab nebula

Tim Unbehaun – Synergies in Non-Thermal Astrophysics in Southern Africa Erlangen, 30.07.2024

Motivation

- Crab nebula as bright, well studied gamma-ray source
- Test a joint-likelihood analysis where the data of the two instruments is combined at the event level
- Use Fermi-LAT + H.E.S.S. data to constrain the Inverse Compton spectrum and morphology of the nebula
- Combine with radio to x-ray data of the synchrotron regime
- Compare to the prediction of phenomenological Synchrotron-Self-Compton models
- Publication at https://arxiv.org/abs/2403.12608

3D analyses with Gammapy

- Binned likelihood analysis in 3D (2 spatial, 1 energy)
- Combination of different data sets at likelihood level
 → can fit same physical model to data from different instruments
- Requirement: instrument data (DL3) in common format
 → can also include i.e neutrino data, although package is designed for γ-ray data analysis

- MapDataset holds counts, IRFs (exposure, PSF, energy dispersion) background-model, source models
 - Counts cube with two spatial axes + one energy axis
 - *Npred* cube with model prediction (forward folded with IRFs)
- Likelihood fitting:
 - Poisson probability in pixel i to measure n counts given the model prediction ν(ξ) for parameters ξ

$$P\left(n_i \,\middle|\, \nu_i(\xi)\right) = \frac{\nu_i(\xi)^{n_i}}{n_i!} \times \exp(-\nu_i(\xi))$$

• LogLikelihood:

$$-\ln \mathcal{L}(\xi) = -\sum_{i=1}^{N} \ln \left[\frac{\nu_i(\xi)^{n_i}}{n_i!} \times \exp(-\nu_i(\xi)) \right]$$

• Minimizing $TS \equiv -2 \ln \mathcal{L}$ maximizes the Likelihood

Fermi + HESS on the Crab

- Models predict flux as function of spatial and energy coordinates
- Forward folding of the model prediction using the respective IRFs of each instrument
- Minimizing the combined likelihood with respect to the binned counts

The spectrum

The models

- Parametrized distribution of relic 'radio' electrons (low energy, constant extension) and injected 'wind' electrons (high energy, decreasing extension)
- The models mostly differ by the assumed B-field profile

The spectrum

The spectrum

The extension

- The models underpredict the hard x-ray flux while overpredicting the highest energy gamma-ray flux (same electrons responsible for both)
- The small x-ray extension seems to be in conflict with the larger IC extension of the nebula if both are indeed produced by the same electrons

Thanks for your attention!

Bundesministerium für Bildung und Forschung

