The unifying model of Jetted AGNs: the contributions of relativistic and orientation Effects

Evaristus U. Iyida

Department of Physics and Astronomy, University of Nigeria, Nsukka

Synergies in Non-Thermal Astrophysics in Southern Africa, Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

<u>Galaxy</u> is a massive, gravitationally bound system that consists of stars and stellar remnants, an interstellar medium, and dark matter

(def. International Astronomical Union - IAU)

Name → Greek root 'galaxias' = 'milky' (refers to the Milky Way)

Introduction cont'd

Galaxy components: in terms of their content (in terms of their structure will come later)

- Tens to hundreds of billions of stars (including stellar clusters).

- Stellar remnants (white dwarfs, neutron stars, black holes).

- Interstellar medium (gas and dust).

- Dark matter (still an open question).

Andromeda galaxy (M31) 2.5 million ly away (2.4 x 10'⁹ km)

Image credits: David Dayag

Supermassive black holes (SMBHs) in Galaxies

- SMBHs at centre of almost all known galaxies
- a few percent of these BHs are "active"
- "active" \rightarrow luminous centres may out-shine entire galaxy

Jets from AGN — Collimated outflows

- a few percent of AGN eject radio-emitting jets
- jets with relativistic charged particles

Powering source

 $\bullet\,$ BH & accretion $\rightarrow\,$ rotation & accretion-disk $\rightarrow\,$ radiation

Roles of AGNs in Astrophysical Sciences

- Formation of supermassive black hole
- Discovery of distant objects
- Study of intervening intergalactic medium
- Measurements of cosmological parameters
- Investigation of star formation and accretion history
- Principal probes of the Universe on large scales

Elements of AGNs

- SMBH in the centre $\sim 10^6 10^9 M_{\odot}$
- Accretion disk, large temperature range
- Obscuring torus (dust) may block view on disk
- Broad-line Region (BLR), linewidths $\sim 10^3-10^4~{\rm km/s}$
- Narrow-line Region (NLR), linewidths \sim 500 km/s
- Jets (magnetsied plasma)

Radio Loudness factor:

$$R_L = \log\left[\frac{S_{5GHz}}{S_B}\right]$$

(1)

Minority of AGNs (10 - 15%) are radio-loud ($R_L \ge 10$),

Majorities (85 %) are radio-quiet ($R_L < 10$)

Intensity of the Powerful relativistic jets:

• Radio-Loud AGNs \rightarrow Jetted AGN

• Radio-Quiet AGNs \rightarrow Non-jetted AGN

Observational Properties

Blazars

- powered by relativistic jets
- rapid and large variation
- high and variable polarization
- superluminal motions
- high energetic GeV/ TeV emissions

Radio galaxies

- powered by relativistic jets
- strong variable polarization
- superluminal motion in their radio jets
- emit radio waves by synchrotron process

Radio Galaxy Classification

- morphology of double structure
- jets, lobes and hotspots
- by Fanaroff & Riley (FR) in 1974
- division on radio structures
- FR I: edge-darkened
- FR I e.g. Centaurus A
- FR II: edge-brightened
- RGs seen in VHE seem to be FR I
- Cen A, M 87, NGC 1275, PKS 0625-354, IC 310, Per A

Blazar classification based on synchrotron peak frequency

Blazars are divided into two:

- BL Lacertae Objects (BL Lacs)
- Flat Spectrum Radio Quasars(FSRQs)

BL Lacs:

- Low synchrotron peaked (LSPs) $\log \nu_{peak}^{syn} < 14(H_z)$
- Intermediate synchrotron peaked (ISPs) 14 <log $\nu_{peak}^{syn} < 15(H_z)$
- High synchrotron peaked (HSPs) $\log \nu_{peak}^{syn} > 15(H_z)$

FSRQs

• log $\nu_{peak}^{syn} < 12(H_z)$

Broad Spectral Energy Distribution

AGNs emissions are

- Thermal/Disk dominated (\simeq 90 %)
- Non-thermal/Jet dominated (less > 10 %)

Non-thermal emissions occur at all wavelengths

Unification Models include:

- Unification of AGNs based on Intrinsic Properties and Evolution
- Unification of AGNs on the basis of Relativistic Beaming and Orientation effect
- Unification via Blazar Sequence

Evidence in favour or against any of the unification model does not invalidate other models; each model is independent of the other

In relativistic beaming model, the emission from radio sources are produced by two components:

- Boosted core (beamed) emission
- Isotropic lobe (unbeamed) emission

Radio Core-dominance

$$R_r = \frac{L_{r,b}}{L_{r,unb}} = \frac{R_T}{2} \left[(1 - \beta \cos\theta)^{-2} \left(1 + \beta \cos\theta \right)^{-2} \right]$$
(2)

The radio beaming factor

$$g_r(\beta,\theta) = \frac{1}{2} \left[(1 - \beta \cos\theta)^{-2} (1 + \beta \cos\theta)^{-2} \right]$$
(3)

 $\gamma-\mathit{ray}$ Core-dominance:- ratio of the core to lobe $\gamma-\mathit{ray}$ luminosity components

- beamed γ -ray emission
- unbeamed γ -ray emission

 $\gamma - ray$ core-dominance parameter

$$R_{\gamma} = \frac{L_{\gamma,b}}{L_{\gamma,unb}} = \frac{R_T}{2} \left[(1 - \beta \cos\theta)^{-2} + (1 - \beta \cos\theta)^{-2} \right]$$
(4)

If the $\gamma - ray$ beaming factor is

$$g_{\gamma}(\beta,\theta) = \frac{1}{2} \left[(1 - \beta \cos\theta)^{-2} + (1 - \beta \cos\theta)^{-2} \right]$$
(5)

Evaristus U. lyida

$\gamma - ray$ Core-dominance

$$R_{\gamma} = \frac{L_{\gamma,b}}{L_{\gamma,unb}} = g_{\gamma}(\beta,\theta)$$
(6)

The viewing angle $(heta_m)$ can be estimated assuming eta=1

$$\theta_m = \cos^{-1} \left[\frac{2R_m + R_T - [R_T (8R_m + R_T)]^{1/2}}{2R_m} \right]^{1/2} \tag{7}$$

Evaristus U. lyida

Aim:

• Dervive the γ -ray coredominance to investogate the relativistic beaming and orientation effects

Blazar Sample: Fermi Large Area Telescope (4FGL)

• 397 blazar selected from the *Fermi*-Large Area Telescope (*Fermi* LAT, 4FGL)

153 Non $\it Fermi-$ detected Radio galaxies (46 FR Is and 107 FR IIs) from the VLA survey

• The beamed and unbeamed γ -ray emissions computed using

$$L_{\gamma} = 4\pi_L^2 F(1+z)^{\alpha_{\gamma}-1} \tag{8}$$

Analysis and Results

Distribution of γ -ray Core-dominance

Fig. 3: Density distribution of beamed gamma-ray emission

Fig: 4: Cumulative distribution of beamed gamma-ray emission

Parameter	Subsamples	n	d	Р
γ-ray Core-dominance	RGs – HSPs	64 - 138	0.19	0.000008
γ-ray Core-dominance	RGs – LSPs	64 - 133	0.21	0.0006074
γ-ray Core-dominance	RGs – ISPs	64 - 130	0.17	0.0002334
γ-ray Core-dominance	RGs – FSRQs	64 - 279	0.20	0.0007663

Distribution of X-ray Core-dominance

Fig. 3: Density distribution of beamed gamma-ray emission

Fig: 4: Cumulative distribution of beamed gamma-ray emission

Parameter	Subsamples	п	d	Р
X-ray Core-dominance	RGs – HSPs	64 - 138	0.23	0.0005
X-ray Core-dominance	RGs – LSPs	64 - 133	0.16	0.00060
X-ray Core-dominance	RGs – ISPs	64 - 130	0.21	0.00086
X-ray Core-dominance	RGs – FSRQs	64 - 279	0.19	0.00098

Approximate Viewing Angles

Subsamples	average of log R _x	average of log R _y	θ _m from (R _x)	θ _m from (R _γ)
RGs	0.93 ± 0.30	$\textbf{0.89} \pm \textbf{0.32}$	39. 6°	38.2°
FSRQ₅	0.93 ± 0.21	0.97 ± 0.24	22.4°	21.6°
HBLs	1.32 ± 0.05	1.21 ± 0.07	18.8°	19.1°
LBLs	1.21 ± 0.08	1.22 ± 0.05	14.4°	15.2°
IBLs	0.58 ± 0.29	$\textbf{0.79} \pm \textbf{0.31}$	1 3. 9°	13.5°

Distribution of beamed gamma-ray emission

1.0 -

Fig. 3: Density distribution of beamed gamma-ray emission

Fig: 4: Cumulative distribution of beamed gamma-ray emission

Parameter	Subsamples	n	d	Р
Beamed gamma-ray emission	RGs - HSPs	64 – 138	0.39	0.000864
Beamed gamma-ray emission	RGs – LSPs	64 - 133	0.66	0.0003569
Beamed gamma-ray emission	RGs – ISPs	64 – 130	0.71	0.00087534
Beamed gamma-ray emission	RGs – FSRQs	64 – 279	0.87	0.0002344

Distribution of Unbeamed gamma-ray emission

Fig. 1 Density distribution of unbeamed gamma-ray emission

Fig. 2 Cumulative distribution of unbeamed gamma-ray emission

Parameter	Subsamples	n	d	Р
unbeamed gamma-ray emission	RGs- HSPs	64 – 138	0.39	0.000864
unbeamed gamma-ray emission	RGs – LSPs	64 – 133	0.66	0.0003569
unbeamed gamma-ray emission	RGs – ISPs	64 – 130	0.71	0.00087534
unbeamed gamma-ray emission	RGs – FSRQs	64 – 279	0.87	0.0002344

Evaristus U. Iyida

Distribution of Inverse Compton Spectrum

(a) Density distribution of Compton spectrum

(b) Cumulative distribution function Compton spectrum

Parameter	Subsamples	п	đ	p
Inverse Compton spectrum	RGs – HSPs	64 - 138	0.63	4.21×10 ⁻⁰⁶
Inverse Compton spectrum	RGs – LSPs	64 - 133	0.56	3.07×10 ⁻⁰⁴
Inverse Compton spectrum	RGs – ISPs	64 - 130	0.48	1.08×10 ⁻⁰⁵
Inverse Compton spectrum	RGs – FSRQs	64 - 279	0.53	2.98×10 ⁻⁰⁷

Evaristus U. Iyida

Correlations among the Beaming Parameters

Fig. 5: Rr – Lr plot for FSRQs, radio galaxies and BL Lacs

- radio galaxies BLs FSRQs are aligned
- FSRQs are most luminous and beamed

Table 1: Results of linear regression fitting

plots		k	∆k		Δk_0		
Rr – Lx	Whole sample	0.96	0.24	-6.22	0.40	0.62	1.91×10 ⁻⁶
Rr – Lx	radio galaxies	0.82	0.20	-5.03	0.20	0.71	2.03×10 ⁻⁶
$\mathbf{Rr} - \mathbf{Lx}$	Blazars	0.74	0.18	-5.20	0.30	0.57	3.26×10 ⁻⁶

Evaristus U. lyida

Fig. 6: (a) Ry-L,b and (b) Ry-L,b plot for FSRQs, radio galaxies and BL Lacs

Correlations among the relativistic beaming parameters

- radio galaxies lowest in Ry
- FSRQs highest in beamed/unbeamed

Common factor that change linearly is responsible for the variation

p lots	Sample	k	∆k	ĸ0	Δk_0	r	p
$R_{\gamma} - L_{\gamma, \nu}$	Whole sample	-0.93	0.31	2.17	0.08	-0.65	10-6
$R_{y} - L_{y,v}$	Radio galaxies	-0.75	0.26	1.08	0.06	-0.52	10-6
$R_{\gamma} - L_{\gamma, \circ}$	BL Lacs	-0.56	0.23	2.90	0.10	-0.62	10-6
$R_{\gamma} - L_{\gamma, \nu}$	FSRQs	-0.56	0.32	2.90	0.10	-0.68	10-6

plots	Sample	ĸ	∆k	к0	Δk_0	r	P
$R_{\rm y}-L_{\rm y,see}$	Whole sample	1.14	0.34	0.72	0.38	-0.57	10-7
$R_{\rm y} - L_{\rm y, and}$	Radio galaxies	2.03	0.20	0.22	0.26	-0.56	10-8
Ry - Ly.100	BL Lacs	1.25	0.23	-4.32	0.30	-0.58	10-7
$R_y - L_{y,uso}$	FSRQs	1.30	0.16	-5.01	0.20	-0.61	10-7

- Relativistic beaming parameters of blazars and radio galaxies were used to quantitatively test for the consistency of Unified scheme of jetted jetted AGNs
- From the comparison of the distributions of $L_{\gamma,b}$ and $L_{\gamma,unb}$, it is observed that FSRQs could be the extreme version of radio galaxy populations
- This indicates that jetted AGN may start off as a radio galaxy and grow through BL Lacs to FSRQs
- Signifying that radio galaxies are the youngest subclasses of the jetted AGNs with least beaming effect.

Questions/Comments/Suggestions

Thanks for Listening

Evaristus U. Iyida