The unifying model of Jetted AGNs: the contributions of relativistic and orientation Effects

Evaristus U. Iyida

Department of Physics and Astronomy, University of Nigeria, Nsukka

Synergies in Non-Thermal Astrophysics in Southern Africa, Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Evaristus U. Ivida The unifying model of letted AGNs: the contSynergies in Non-Thermal Astrophysics in So

つひひ

<u>Galaxy</u> is a massive, gravitationally bound system that consists of stars and stellar remnants, an interstellar medium, and dark matter

(def. International Astronomical Union - IAU)

つひひ

Name \rightarrow Greek root 'galaxias' = 'milky' (refers to the Milky Way)

Introduction cont'd

Galaxy components: in terms of their content (in terms of their structure will come later)

- Tens to hundreds of billions of stars (including stellar clusters).
- Stellar remnants (white dwarfs, neutron stars, black holes).
	- Interstellar medium (gas and dust).

- Dark matter (still an open question).

Andromeda galaxy (M3I) 2.5 million ly away (2.4 x 10' km)

Image credits: David Davag

 Ω

 $x = x - x$

 -111 The unifying model of Jetted AGNs: the contSynergies in Non-Thermal Astrophysics in So

Supermassive black holes (SMBHs) in Galaxies

- SMBHs at centre of almost all known galaxies
- a few percent of these BHs are "active"
- "active" \rightarrow luminous centres may out-shine entire galaxy

Jets from AGN - Collimated outflows

- a few percent of AGN eject radio-emitting jets
- jets with relativistic charged particles

Powering source

• BH & accretion \rightarrow rotation & accretion-disk \rightarrow radiation

つひひ

Roles of AGNs in Astrophysical Sciences

- **•** Formation of supermassive black hole
- Discovery of distant objects
- **•** Study of intervening intergalactic medium
- Measurements of cosmological parameters
- Investigation of star formation and accretion history
- Principal probes of the Universe on large scales

Elements of AGNs

- SMBH in the centre $\sim 10^6-10^9 M_{\odot}$
- Accretion disk, large temperature range
- Obscuring torus (dust) may block view on disk
- Broad-line Region (BLR), linewidths $\sim 10^3 - 10^4$ km/s
- Narrow-line Region (NLR), linewidths ∼ 500 km/s
- Jets (magnetsied plasma)

Radio Loudness factor:

$$
R_L = log\left[\frac{S_{5GHz}}{S_B}\right]
$$

(1)

 Ω

Minority of AGNs (10 - 15%) are radio-loud $(R_L > 10)$,

Majorities (85 %) are radio-quiet ($R_L < 10$)

Intensity of the Powerful relativistic jets:

• Radio-Loud AGNs \rightarrow Jetted AGN

• Radio-Quiet AGNs \rightarrow Non-jetted AGN

Observational Properties

Blazars

- powered by relativistic jets
- rapid and large variation
- high and variable polarization
- superluminal motions
- \bullet high energetic GeV/ TeV emissions

Radio galaxies

- powered by relativistic jets
- strong variable polarization
- superluminal motion in their radio jets
- emit radio waves by synchrotron process

 QQ

Radio Galaxy Classification

- morphology of double structure
- jets, lobes and hotspots
- by Fanaroff & Riley (FR) in 1974
- · division on *radio* structures
- FR I: edge-darkened
- FR I e.g. Centaurus A
- FR II: edge-brightened
- RGs seen in VHE seem to be FR I
- Cen A, M 87, NGC 1275, PKS 0625-354, IC 310, Per A

Blazar classification based on synchrotron peak frequency

Blazars are divided into two:

- BL Lacertae Objects (BL Lacs)
- Flat Spectrum Radio Quasars(FSRQs)

BL Lacs:

- Low synchrotron peaked (LSPs) $\log \nu_{peak}^{syn} < 14 (H_z)$
- Intermediate synchrotron peaked (ISPs) $14 <$ log $\nu_{peak}^{syn} < 15(H_z)$
- High synchrotron peaked (HSPs) $\log \nu_{peak}^{syn} > 15(H_z)$

FSRQs

 $\log \nu_{peak}^{syn} < 12(H_z)$

Broad Spectral Energy Distribution

AGNs emissions are

- Thermal/Disk dominated ($\simeq 90$ $\%$)
- Non-thermal/Jet dominated $(\text{less} > 10 \%)$

Non-thermal emissions occur at all wavelengths

 Ω

Unification Models include:

- Unification of AGNs based on Intrinsic Properties and Evolution
- Unification of AGNs on the basis of Relativistic Beaming and Orientation effect
- Unification via Blazar Sequence

Evidence in favour or against any of the unification model does not invalidate other models; each model is independent of the other

In relativistic beaming model, the emission from radio sources are produced by two components:

- Boosted core (beamed) emission
- Isotropic lobe (unbeamed) emission

Radio Core-dominance

$$
R_r = \frac{L_{r,b}}{L_{r,unb}} = \frac{R_T}{2} \left[\left(1 - \beta \cos \theta \right)^{-2} \left(1 + \beta \cos \theta \right)^{-2} \right] \tag{2}
$$

The radio beaming factor

$$
g_r(\beta,\theta) = \frac{1}{2} \left[\left(1 - \beta \cos \theta \right)^{-2} \left(1 + \beta \cos \theta \right)^{-2} \right] \tag{3}
$$

 γ – ray Core-dominance:- ratio of the core to lobe γ – ray luminosity components

- beamed γ -ray emission
- unbeamed γ -ray emission

 γ – ray core-dominance parameter

$$
R_{\gamma} = \frac{L_{\gamma,b}}{L_{\gamma,unb}} = \frac{R_{\mathcal{T}}}{2} \left[(1 - \beta \cos \theta)^{-2} + (1 - \beta \cos \theta)^{-2} \right] \tag{4}
$$

If the γ – ray beaming factor is

$$
g_{\gamma}(\beta,\theta) = \frac{1}{2} \left[(1 - \beta \cos \theta)^{-2} + (1 - \beta \cos \theta)^{-2} \right]
$$
(5)

Evaristus U. Ivida The unifying model of Jetted AGNs: the contSynergies in Non-Thermal Astrophysics in So

γ – ray Core-dominance

$$
R_{\gamma} = \frac{L_{\gamma,b}}{L_{\gamma,unb}} = g_{\gamma}(\beta,\theta)
$$
 (6)

The viewing angle (θ_m) can be estimated assuming $\beta = 1$

$$
\theta_m = \cos^{-1} \left[\frac{2R_m + R_T - [R_T(8R_m + R_T)]^{1/2}}{2R_m} \right]^{1/2} \tag{7}
$$

Evaristus U. Ivida The unifying model of Jetted AGNs: the contSynergies in Non-Thermal Astrophysics in So

 QQ

э

Aim:

• Dervive the γ -ray coredominance to investogate the relativistic beaming and orientation effects

Blazar Sample: Fermi Large Area Telescope (4FGL)

• 397 blazar selected from the Fermi-Large Area Telescope (Fermi LAT, 4FGL)

153 Non Fermi-detected Radio galaxies (46 FR Is and 107 FR IIs) from the VLA survey

• The beamed and unbeamed γ -ray emissions computed using

$$
L_{\gamma} = 4\pi_L^2 F (1+z)^{\alpha_{\gamma}-1} \tag{8}
$$

Analysis and Results

Distribution of y-ray Core-dominance

Fig. 3: Density distribution of beamed gamma-ray emission

Fig: 4: Cumulative distribution of beamed gamma-ray emission

Evaristus U. Ivida

Distribution of X-ray Core-dominance

Fig. 3: Density distribution of beamed gamma-ray emission

Fig: 4: Cumulative distribution of beamed gamma-ray emission

Approximate Viewing Angles

Distribution of beamed gamma-ray emission

 1.0

Fig. 3: Density distribution of beamed gamma-ray emission

Fig: 4: Cumulative distribution of beamed gamma-ray emission

Distribution of Unbeamed gamma-ray emission

Fig. 1 Density distribution of unbeamed gamma-ray emission

Fig. 2 Cumulative distribution of unbeamed gamma-ray emission

 \sim

Distribution of Inverse Compton Spectrum

(a) Density distribution of Compton spectrum

(b) Cumulative distribution function Compton spectrum

 $-$ LSPs

 $---$ SGs

 $\overline{\mathbf{3}}$

Correlations among the Beaming Parameters

Fig. 5: Rr - Lr plot for FSRQs, radio galaxies and BL Lacs

- radio galaxies BLs FSRQs are aligned \bullet
- FSRQs are most luminous and beamed \bullet

Table 1: Results of linear regression fitting

plots	S ample	κ	$\sqrt{1}$	k_0	Δk_0	\mathcal{L}	P
$Rr - Lx$	Whole sample	0.96	0.24	-6.22	0.40	0.62	1.91×10^{-6}
$Rr - Lx$	radio galaxies	0.82	0.20	-5.03	0.20	0.71	2.03×10^{-6}
$Rr - Lx$	Blazars	0.74	0.18	-5.20	0.30	0.57	3.26×10^{-6}

Correlations among the relativistic beaming parameters

- radio galaxies lowest in Ry ٠
- **FSROs** highest in ٠ beamed/unbeamed

Common factor that change linearly is responsible for the variation

 QQ

Fig. 6: (a) Ry - L,b and (b) Ry - L,b plot for FSRQs, radio galaxies and BL Lacs

- Relativistic beaming parameters of blazars and radio galaxies were used to quantitatively test for the consistency of Unified scheme of jetted jetted AGNs
- From the comparison of the distributions of $L_{\gamma,b}$ and $L_{\gamma,umb}$, it is observed that FSRQs could be the extreme version of radio galaxy populations
- This indicates that jetted AGN may start off as a radio galaxy and grow through BL Lacs to FSRQs
- Signifying that radio galaxies are the youngest subclasses of the jetted AGNs with least beaming effect.

Questions/Comments/Suggestions

Thanks for Listening

Evaristus U. Ivida

€⊡ The unifying model of Jetted AGNs: the contSynergies in Non-Thermal Astrophysics in So

 299