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Introduction

Galaxy is a massive, gravitationally
bound system that consists of stars
and stellar remnants, an interstellar

medium, and dark matter

(def. International Astronomical Union - IAU)

-

NGC 4414, Credit: NASA/HST NGC 3923, Credit: NASA/HST

Name = Greek root 'galaxias' = ‘'milky’ (refers to the Milky Way)
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Introduction cont’d

Galaxy components: in terms of their content
(in terms of their structure will come later)

Andromeda galaxy (M31)

- Tens to hundreds of 2.5 million ly away (2.4 x 10° km)
billions of stars e ey

(including stellar
clusters).

- Stellar remnants
(white dwarfs, neutron
stars, black holes).

- Interstellar medium
(gas and dust).

- Dark matter
(still an open question). Image credits: David Dayag
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Active galactic nuclei (AGNs)

Supermassive black holes (SMBHs) in Galaxies

o SMBHs at centre of almost all known galaxies
o a few percent of these BHs are “active”

@ “active” — luminous centres — may out-shine entire galaxy

Jets from AGN — Collimated outflows

o a few percent of AGN eject radio-emitting jets

o jets with relativistic charged particles

Powering source
o BH & accretion — rotation & accretion-disk — radiation
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Roles of AGNs in Astrophysical Sciences

@ Formation of supermassive black hole

Discovery of distant objects

Study of intervening intergalactic medium

@ Measurements of cosmological parameters

Investigation of star formation and accretion history

Principal probes of the Universe on large scales
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Elements of AGNs

@ SMBH in the centre
~ 106 — 10°M,,

@ Accretion disk, large
temperature range

@ Obscuring torus (dust) may
block view on disk

@ Broad-line Region (BLR),
linewidths ~ 103 — 10* km/s

o Narrow-line Region (NLR),
linewidths ~ 500 km/s

@ Jets (magnetsied plasma)

Narrow Line

: Region
/ Broad Line

Region

Accretion
Disk

/

Obscuring
Torus
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Classification of AGNs

Radio Loudness factor:

RL = Iog |:SEjS.GBHZ:| (1)

Minority of AGNs (10 - 15%) are radio-loud (R, > 10),

Majorities (85 %) are radio-quiet (R, < 10)
Intensity of the Powerful relativistic jets:

o Radio-Loud AGNs — Jetted AGN

@ Radio-Quiet AGNs — Non-jetted AGN
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Jetted active galactic nuclei

Observational Properties

Blazars
Radio galaxies

@ powered by relativistic jets L
@ powered by relativistic jets

@ rapid and large variation
@ strong variable polarization
@ high and variable polarization

@ superluminal motion in their
@ superluminal motions radio jets

@ high energetic GeV/ TeV

o @ emit radio waves by synchrotron
emissions

process
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Radio Galaxy Classification

@ morphology of double structure
@ jets, lobes and hotspots

e by Fanaroff & Riley (FR) in
1974

e division on radio structures
@ FR I: edge-darkened

e FR 1 e.g. Centaurus A

o FR II: edge-brightened

@ RGs seen in VHE seem to be
FR I

] |
/\ \/ e Cen A, M 87, NGC 1275,
. . PKS 0625-354, IC 310, Per A

cantar distance canter

Hotspot

Plume

FR type | FRtype Il

brightness
brightnes-s
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Blazar classification based on synchrotron peak frequency

Blazars are divided into two:
@ BL Lacertae Objects (BL Lacs)
@ Flat Spectrum Radio Quasars(FSRQs)

BL Lacs:

@ Low synchrotron peaked (LSPs)

log 1777, < 14(H;)

@ Intermediate synchrotron peaked (ISPs)

14 <log v, < 15(H;)

@ High synchrotron peaked (HSPs)
log v, > 15(H,)

peak
FSRQs
e log V;};Zk < 12(H;)
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AGNs Emissions

Broad Spectral Energy Distribution

3m  300um  3um 3008 4keV  400kev

\I,cmlmmvI \I\/IIIR-I\i\Fi/ I \§uﬂX-ra\yI/ Gamma
AGNs emissions are Rado  Sub-mmFR ,\OpticaI-UV,\ Harg Xeray
@ Thermal/Disk dominated (~ 90 0
)

o Non-thermal/Jet dominated
(less > 10 %)

Non-thermal emissions occur at all

logvFuv (relative)
o

-4

wavelengths
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Unification of AGNs

Unification Models include:

@ Unification of AGNs based on Intrinsic Properties and Evolution

@ Unification of AGNs on the basis of Relativistic Beaming and
Orientation effect

@ Unification via Blazar Sequence

Evidence in favour or against any of the unification model does not
invalidate other models; each model is independent of the other
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Relativistic Beaming Concept and Basic Assumption

In relativistic beaming model, the emission from radio sources are
produced by two components:

@ Boosted core (beamed) emission

@ Isotropic lobe (unbeamed) emission

Radio Core-dominance

Lo _Rr

Re= 1" = 5 [ Beost) (1.4 eost) Q
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Relativistic Beaming Concept and Basic Assumption

The radio beaming factor

[(1 — Beosh) % (1 + Beosh) 2 (3)

N

gr(ﬁv 9) =

~ — ray Core-dominance:- ratio of the core to lobe v — ray luminosity

components

@ beamed 7-ray emission

@ unbeamed ~-ray emission
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Relativistic Beaming Concept and Basic Assumption

~ — ray core-dominance parameter

Ry = 20 = BT (0 geost) 1 (1 - Beost) ] )
[—'y,unb 2

If the v — ray beaming factor is

£ (5.0) = 5 [(1— Beost) 2+ (1~ feost) ] (5)
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Relativistic Beaming Concept

~ — ray Core-dominance

Lo
Ry == =g(8.0) (6)
L’y,unb

The viewing angle (6,) can be estimated assuming 5 =1

1/2
1 | 2Rm + Rt — [RT(8Rm + RT)]M? /

2R, (7)

0, = cos
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Aim, Sample Description and Calculation

Aim:

@ Dervive the v -ray coredominance to investogate the relativistic
beaming and orientation effects

Blazar Sample: Fermi Large Area Telescope (4FGL)

@ 397 blazar selected from the Fermi-Large Area Telescope (Fermi
LAT, 4FGL)

153 Non Fermi-detected Radio galaxies (46 FR Is and 107 FR Ils) from
the VLA survey

@ The beamed and unbeamed «-ray emissions computed using

L, =4n?F(1 4 z)* ! (8)
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Analysis and Results

Distribution of y-ray Core-dominance
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Fig. 3: Density distribution of beamed g Fig: 4: Ct distribution of beamed gamma-ray emission

v

RGs— HSPs 64— 138 0.19 0.000008
RGs— L3Ps 64— 133 021 0.0006074
RGs— I5Ps 64-130 0.17 0.0002334
RGs—FSRQs 64— 279 0.20 0.0007663
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Results cont'd

Distribution of X-ray Core-dominance
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Fig. 3: Density distribution of beamed g issi Fig: 4: Ct distribution of beamed gamma-ray emission

RGs— HSPs 64— 138 0.0005
RGs— LSPs 64— 133 0.16 0.00060
RGs— ISPs 64-130 021 0.00086
RGs—FSRQs 64— 279 0.19 0.00098
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Results cont'd

Approximate Viewing Angles

Subsamples average of lo average oflog 0 from 0, from
(R,
38.2

0.93 £ 0.30 0.89 £ 0.32

0.93 +0.21 0.97 £ 0.24 2.4 21.6°
1.32 £ 0.05 1.21 0.07 18.8° 19.1°
1.21 £ 0.08 1.22 £ 0.05 144 15.2°
0.58 £ 0.29 0.79 £ 0.31 13.9° 13.5°
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Results cont'd

Distribution ofbeamed gamma-ray emission
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Fig. 3: Density distribution of beamed gamma-ray emission Fig: 4: Cumulative distribution of beamed gamma-ray emission
RGs— HSPs 64— 138 0.000864
RGs — LSPs 64— 133 0.66 0.0003569
RGs— ISPs 64 — 130 0.71 0.00087534
RGs —FSRQs 64— 279 0.87 0.0002344
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Results cont'd

Distribution of Unbeamed gamma-ray emission
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Fig. 1 Density distribution of unbeamed gamma-ray emission Fig. 2 Ci b d gamma-ray emission
RGs— HSPs 64138 0.39 0.000864
RGs— LSPs 64_ 133 0.66 0.0003569
RGs— ISPs 64 —130 0.71 0.00087534
G =1 64— 279 0.87 0.0002344
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Results cont'd

Distribution of Inverse Compton Spectrum
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Correlations among the Beaming Parameters
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Fig. 5: Rr—Lr plot for FSRQs, radio galaxies and BL Lacs

Whole sample 0.96

radio galaxies 0.82

Blazars
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* radio galaxies — BlLs — FSRQs are aligned

*  FSRQs are most luminous and beamed

Tabio 1

Resutts of linear ragression fitting

am » @ 1.91X107
0.20 -5.03 0.20 0.71 2.03x10°¢
0.18 -5.20 0.30 0.57 3.26X107
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Results cont'd

Correlations among the relativistic beaming parameters
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Conclusion

@ Relativistic beaming parameters of blazars and radio galaxies were
used to quantitatively test for the consistency of Unified scheme of
jetted jetted AGNs

@ From the comparison of the distributions of L, ; and L, ,np, it is
observed that FSRQs could be the extreme version of radio galaxy
populations

@ This indicates that jetted AGN may start off as a radio galaxy and
grow through BL Lacs to FSRQs

@ Signifying that radio galaxies are the youngest subclasses of the jetted
AGNs with least beaming effect.
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Questions/Comments/Suggestions

Thanks for Listening
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