

1) The Big Picture: A quick overview 2) Astrophysics and Detection of E<10¹⁴ eV Galactic CRs (very brief) **3** Detection of $E > 10^{14} eV$: Basic air shower phenomenology 4) Basic concepts and technologies of EAS experiments (very brief & qualitatively) 5) 6) · Observing EAS - particle component 7) - optical component 8) $J(E) \propto E$ - radio component 9) 10-25 - microwave component 10 LHC Tevatron (collider) 1012 1013 1014 1015 1016 1017 1010 1011 10 109 GeV Tel PeV EeV

Karl-Heinz Kampert – University Wuppertal

Menu...

LECTURE 2

Recap: Particles Component of EAS

Karl-Heinz Kampert – Bergische Universität Wuppertal

Karl-Heinz Kampert – Bergische Universität Wuppertal

Two mechanisms • isotropic fluorescence light

odirected Cherenkov light

Fluorescence Light in Air

TELESCOPE Ist Fly's Eye

this Issue:

h-Energy Cosmic Rays

e IAU at Prague

erican Astronomers leport

nar Orbiter 5 Takes Unusual Pictures

invention at Long Beach

Russell W. Porter Exhibit

aboratory Exercises in Astronomy -Variable Stars in M15

> Vol. 34, No. 4 DCTOBER, 1967

The unsuccessful pioneers... 1967: K. Greisen with a group of students

Karl-Heinz Kampert - Bergische Universität Wuppertal

Cherenkov Light in EAS Exp

Much higher intensity as compared to fluorescence, but only $\sim 1^{\circ}$ cone of EAS direction \rightarrow only suited up to $\sim 10^{17} \text{ eV}$

like fluorescence: ~300-500 nm

Pioneered by AEROBIC in HEGRA Now: HiSCORE @ Tunka Valley

Most recent: Radio Emission in EAS

Mainly charge separation in geomagnetic field (~90%)

Karl-Heinz Kampert – Bergische Universität Wuppertal

Theory predicts additional mechanisms: excess of electrons in shower front → charge excess (Askaryan), ~10%

Askaryan: radially polarised

LOPES Experiment: proof of principle

25 ns (40 MHz bandwidth)!

Codalema (Nantes) succeeded almost in parallel

Karl-Heinz Kampert – Bergische Universität Wuppertal

A 10¹⁷ eV airshower produces a 1 GJy radio flare in

The brightest radio source, the sun, has 1MJy.

Falcke, KHK, et al., Nature 435 (2005) 313

Radio Detection of EAS around the world

Karl-Heinz Kampert – Bergische Universität Wuppertal

Application Ranges of EAS Observables

Karl-Heinz Kampert - Bergische Universität Wuppertal

10¹⁷ eV

10²⁰ eV

Particle numbers at ground (100% duty cycle)

Fluorescence light (15% duty cycle)

Radio emission (almost 100% duty cycle)

Techniques now often used in combination \rightarrow Hybrid Observations

3) Detection of $E > 10^{14} eV$: Basic air shower phenomenology 4) Basic concepts and technologies of EAS experiments 5) The light and heavy knee: E_{max} of galactic accelerators?

• Experiments in the energy range of the knee

- The Knee and the "heavy knee"
- Interpretation:
 - maximum energy of galactic sources?
 - díffusion losses from galaxy?

6)

7)/

8)

9)

10)

Menu...

accelerators?

Major EAS experiments around the knee from recent past to present

Karl-Heinz Kampert – Bergische Universität Wuppertal

Features of the CR spectrum

Features of the CR spectrum

<

particle acceleration at shock waves

Karl-Heinz Kampert – Bergische Universität Wuppertal

Putative

E ~ 10²⁰ eV ? NRAO/AUI

Starburst Galaxies M82 (3.5 Mpc)

$E \sim 10^{19} eV$?

Features of the CR spectrum

Features of the CR spectrum

IceTop at South Pole

IceTop @ surface

Karl-Heinz Kampert - Bergische Universität Wuppertal

Features of the CR spectrum

Features of the CR spectrum

3) Detection of $E > 10^{14}$ eV: Basic air shower phenomenology 4) Basic concepts and technologies of EAS experiments 5) The light and heavy knee: E_{max} of galactic accelerators? 6) The end of the CR-spectrum: E_{max} of extragalactic accelerators? · Pierre Auger Observatory 7) 8) · Telescope Array 9) • E-spectrum 10 · Propagation of UHECR $J(E) \propto E^{-1}$ Composition 10-25 LHC Tevatron (collider) • open issues & debates GeV

Karl-Heinz Kampert – University Wuppertal

Menu...

extremely high energy nuclear collísions

light trace at night-sky (calorimetric)

Fluorescence Light Karl-Heinz Kampert – Bergische Universität Wuppertal

Hybrid Detection of EAS

Primary particles initiate an extensive air shower

Particle Footprint at Ground

Hybrid Detection of UHECR: Pierre Auger Observatory

Nucl. Instr. Meth. A798 (2015) 172

3000 km² area Argentina (Malargüe)

Central campus with visitors center

Karl-Heinz Kampert – Bergische Universität Wuppertal

- 1400 m altitude
- 35° S, 69° W
- 27 Telescopes to measure light trace of EAS in atmosphere
- integrated light intensity \rightarrow CR energy
- 13% duty cycle
- I660 Water Cherenkov detectors on 1.5 km grid to measure footprint of particles at ground
- I00% duty cycle
- cross calibrated with FD-telescopes with hybrid events
- I53 radio antennas for em-radiated energy
- 18 km² area
- I00% duty cycle

Karl-Heinz Kampert – Bergische Universität Wuppertal

TA detector in Utah

ELS

R8W

60

39.3°N, 112.9°W ~1400 m a.s.l.

Surface Detector (SD)

507 plastic scintillator SDs

1.2 km spacing \sim 700 km²

Fluorescence Detector(FD)

3 stations 38 telescopes

FD and SD: fully operational 4 since 2008/May

Telescope Array (TA) Delta, UT, USA 507 detector stations, 680 km² 36 fluorescence telescopes

Pierre Auger Observatory Province Mendoza, Argentina 1660 detector stations, 3000 km² 27 fluorescence telescopes

Karl-Heinz Kampert – Bergische Universität Wuppertal

Auger and TA

Auger and TA can see the same sky

Auger: started 01/2004 started 05/2008 TA:

A quadruple event

4 Telescopes + 20 km2 Footprint

Calibrating the Primary Energy

Central campus with visitors center

Karl-Heinz Kampert – Bergische Universität Wuppertal

absolute E-scale from light intensity

Calibrating the Primary Energy

Karl-Heinz Kampert – Bergische Universität Wuppertal

Calibrating the Primary Energy

Karl-Heinz Kampert – Bergische Universität Wuppertal

Absolute calibration of radio signal: 18 MeV energy radiated in radio signal @ 1 EeV

Auger UHECR Energy Spectrum

Castellina @ ICRC2019

Karl-Heinz Kampert – Bergische Universität Wuppertal

Interlude: Intergalactic Propagation

Diffuse Extragalactic Background Radiation CMB: 412 photons/cm³ for comparison: ρ_H < 1 proton/m³

1025

1966: "End to the CR Spectrum ?"

VOLUME 16, NUMBER 17

PHYSICAL REVIEW LETTERS

END TO THE COSMIC-RAY SPECTRUM?

Kenneth Greisen

Cornell University, Ithaca, New York (Received 1 April 1966)

25 April 1966

Greisen, Zatsepín & Kuz'mín

UPPER LIMIT OF THE SPECTRUM OF COSMIC RAYS

GZK effect for CR protons: The Two Ingredients

Karl-Heinz Kampert - Bergische Universität Wuppertal

Note: This case was treated in the same two papers!

interaction with CMB photon may induce a collective oscillation of neutrons against protons

Karl-Heinz Kampert - Bergische Universität Wuppertal

GZK effect for CR Nuclei

Often, single or multiple nucleons are lost in this process → photodisintegration

 $(Z,N) + \gamma \rightarrow (Z,N-1) + n$ → (Z-1,N) + p → (Z,N-2) + 2n → ...

discovered 1947

→ nuclei don't survive propagation if energy is above Giant Resonance threshold

Examples of Giant-Dipole Cross sections

Karl-Heinz Kampert - Bergische Universität Wuppertal

Karl-Heinz Kampert - Bergische Universität Wuppertal

Energy Loss Length for Nuclei

73

90% of events from x < D ; $dN/dE \sim E^{-2.7}$

Karl-Heinz Kampert - Bergische Universität Wuppertal

GZK Horizon

Harari et al.; astro-ph/0609294

90% of p/Fe at E>80 EeV come from within 100 Mpc

90% of Si at E>80 EeV

come from within 25 Mpc

120 140

E_{th} (EeV)

100

Karl-Heinz Kampert - Bergische Universität Wuppertal

CRPropa: Open Source Public Code

Propagates CR particles from source to observer and accounts for all type of interactions in photon fields as well as in magnetic fields.

KHK et al, Astropart. Phys. 42 (2013) 41 R.A. Batista, KHK et al, JCAP 05 (2016) 038

Karl-Heinz Kampert – Bergische Universität Wuppertal

GZK-effect, i.e. propagation effect ?

Karl-Heinz Kampert – Bergische Universität Wuppertal

Why is there a ,,dip" for propagated protons ? $p\gamma \rightarrow e^+e^- + p$ first pointed out by V. Berezinsky $\rightarrow \Delta \rightarrow p + \pi$ $e^+\gamma \rightarrow ,,Cr^{"} + p + n$

20 - 300

Longitudinal Shower Development -> Primary Mass

KHK, Unger, APP 35 (2012)

from slide 32

Auger @ ICRC2019: arXiv:1909.09073

<Xmax > and RMS(Xmax)

Combined Fit of E-spec, Xmax, σ(Xmax)

minimal astrophysical model

Pierre Auger Coll., JCAP 1704 (2017) no.04, 038

- $E_{\max} = R_{\text{cut}} Z$
- power law injection $E^{-\gamma}$
- five mass groups: p, He, N, Si
- source evolution $(1+z)^m$
- 1D propagation with CRPropa3
- Gilmore+12 EBL photon field

extended model

D. Wittkowski for the Pierre Auger Coll., ICRC15

- local large scale structure (Dolag+12)
- extragalactic magnetic field (Sigl+03)
- 4D propagation with CRPropa3

Combined Fit of E-spec, Xmax, \sigma(Xmax)

Karl-Heinz Kampert – Bergische Universität Wuppertal

with EGMF

Combined Fit of E-spec, X_{max}, σ(X_{max})

maximum source rigidity describes data very well
EGMF has significant effect
source rigidity found to be < 10¹⁹ V
need very hard source spectra

4D with EGMF	4D no EGMF	1D no EG
1.61	0.61	0.87
18.88	18.48	18.62

