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Fig. 1. Counts-in-cells of the LoTSS-DR2 radio source catalogue in Mollweide view and equatorial coordinates without a flux density cut. The
counts-in-cells are based on HEALPix with a resolution of 13.74 square arcmin.

2.2. Modelling the counts-in-cells distribution

Deviations from the naively expected Poisson distribution that
are uncorrelated at large angular scales, but stem from either
local physics (like in the case of AGNs or nearby spirals), but
also imaging artefacts, can be described by what is called a Cox
process (Cox 1955), which describes a random process within a
Poisson random process.

Let Ni be a random variable that denotes the counts of radio
sources in a single cell i (measured by means of a radio source
catalogue) and Oi being the Poisson distributed number of phys-
ical objects (i.e. an AGN or a star forming galaxy, SFG) in that
cell, then

Ni ⇠
OiX

j=1

C ji, Oi ⇠ Poisson(�), (6)

where C ji denotes another random variable that counts the num-
ber of components that are associated with a physical object j

in cell i. Finally, N =
P

Ni denotes the total number of radio
sources in the source catalogue.

The resulting distribution for Ni (and N) depends on the de-
tailed assumptions that we make on the discrete distribution of
C ji. The associations captured by the component counts C ji can
have many di↵erent reasons; they can include imaging artefacts,
typically associated to bright sources, they could be the lobes
correlated with the core of an AGN, or it could happen that a
large spiral is broken up in several components by the source
finding algorithm. From the LoTSS-DR1 value-added catalog
(Williams et al. 2019), visual classification in the citizen sci-
ence project LOFAR Galaxy Zoo has shown that approximately
13,200 sources, or about 4% of the total, are associated together.
This indicates that the distribution of component counts depends
on a combination of astrophysical correlations, survey proper-
ties, and the specifics of the source-finding algorithm. Given this
high level of complexity, we do not attempt to derive their distri-
bution from first principles; instead, we aim to estimate reason-
able probability distributions for them.

If C ji = 1 for all objects, Ni and N are Poisson distributed
numbers. Siewert et al. (2020) argued that the counts of com-
ponents is a Poisson process itself with C ji ⇠ Poisson(), where
 denotes the intensity of the process, i.e. the mean number of

component counts. This ansatz does allow for zero components,
which would mean that we make the assumption that several
physical objects remain undetected in the survey. The resulting
distribution can be easily obtained starting from the generating
function of a Poisson (P) distribution (Johnson et al. 2005),

GP(z) = exp[�(z � 1)], (7)

where � > 0 denotes the intensity of the Poisson process and z

denotes the random variable. Then the generating function of the
compound Poisson (CP) distribution becomes

GCP(z) = exp[�(exp[(z � 1)] � 1)], (8)

and we can calculate its mean and variance (Johnson et al. 2005),

µCP = G
0
CP(1) = �, (9)

�2
CP = G

00
CP(1) +G

0
CP(1) � [G0CP(1)]2 = �(1 + ) (10)

Consequently, the clustering parameter becomes n
CP
c
= 1 +

 > 1. Similarly, we can estimate higher central moments and
find

g
CP
1 =

1 + 3 + 2

(�)1/2(1 + )3/2 =
n

2
c
+ nc � 1
µ1/2 n

3/2
c

, (11)

g
CP
2 � 3 =

1 + 7 + 62 + 3

�(1 + )2 =
n

3
c
+ 3n

2
c
� 2nc � 1
µ n2

c

. (12)

The assumption that the counts of components may turn out
to be zero might be in contradiction with the assumption that
a survey is complete above a certain flux density. Thus, we also
make use of a logarithmic distribution of C ji, for which the num-
ber of components is at least 1 and is discrete.1 We now show
that for C ji ⇠ Logarithmic(p), with 0 < p < 1 denoting the pa-
rameter of the distribution, the resulting Cox process produces

1 Fisher et al. (1943) introduced the logarithmic distribution studying
the relation of the number of species and the number of individuals in a
random animal population. From the statistical perspective our problem
at hand is similar – with individuals (radio components) that belong to
di↵erent species (physical objects like AGNs or SFGs).
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Fig. 5. Histograms of counts-in-cells of mask d for LoTSS-DR2 and the random mock catalogue at the flux density thresholds 2, 4 and 8 mJy (left,

top to bottom), and the CDFs (right, top to bottom) with the best-fit Poisson and compound Poisson and negative binomial distributions.

also rejected by the KS test statistics. Thus other e↵ects on top
of the ones accounted for in the negative binomial distribution
must exist. For masks 1017 (our most conservative mask which
minimises imaging artefacts) and 1219 (a bit less conservative,
but more restrictive than mask d), the d-values are notably close
to the critical values, suggesting that these geometric masks, by
excluding cells that overlap with fewer pointings and are farther
from the centre of the pointings (see App. A), are better fit by

the negative binomial distribution than any other of the models
tested in this work.

While Pearson’s Chi-squared statistic and the KS test clearly
exclude a Poissonian distribution of the data (while the random
mocks are in good agreement with a Poissonian distribution),
they favour the negative binomial distribution over a compound
Poissonian distribution. To further quantify that preference we
also embark on a Bayesian model comparison. We therefore cal-
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Fig. 4. Left: Comparison of the di↵erential source counts from mask d, mask 1017 (explained in App. A.3), and mask 50 (explained in App. A.2)
with the results from the LoTSS Deep Fields (Mandal et al. 2021), and LoTSS-DR1 (Siewert 2021). The ending ‘radio’ refers to the application
of the mask to the LoTSS-DR2 radio source catalogue, while the ending ‘value’ refers to the LoTSS-DR2 value-added catalogue. Downward
pointing arrows indicate error-bars that extend outside of the plotted y-range. Right: Comparison of the di↵erential source counts from ‘mask d’
with the results from the LoTSS Deep Fields, TGSS (150 MHz; Intema et al. 2017), RACS (888 MHz; Hale et al. 2021), LoLSS-DR1 (54 MHz;
de Gasperin et al. 2021), NVSS (1.4 GHz; Matthews et al. 2021), and SKADS (1400 MHz Wilman et al. 2008).

Table 3. Comparison of chi-square/dof test for di↵erent masks at dif-
ferent flux cuts for LoTSS-DR2 sources. The degrees of freedom are
Nbins � 1 for the Poisson distribution and Nbins � 2 for the compound
Poisson and negative binomial distributions

.

Mask S min Nbins Poisson compound
Poisson

negative
binomial

mask
d

2 mJy 16 319.8 11.7 7.8
4 mJy 12 325.5 10.9 5.2
8 mJy 9 287.1 14.9 6.4

mask
1219

2 mJy 16 323.7 4.2 1.8
4 mJy 12 327.1 6.6 2.4
8 mJy 10 310.8 8.6 3.3

mask
1017

2 mJy 16 295.7 4.3 1.9
4 mJy 12 293.9 7.0 2.8
8 mJy 9 262.6 10.3 4.1

for mask 1219 and mask 1017 show values less than two. This
suggests that these masks may reduce flux density fluctuations
toward the outer parts of the pointings (see Shimwell et al. 2022),
leading to less systematics e↵ects. However, since we have not
tested other models, it is possible that other approaches could
yield other results.

Pettitt & Stephens (1977) demonstrated that for discrete
distributions, the Kolmogorov-Smirnov (KS) test might exhibit
higher statistical power compared to the �2 test. Hence, we make
use of the KS test as our secondary evaluation method. The KS
test is non-parametric and it makes no assumption about the dis-
tributions which it compares. It quantifies the distance between
the empirical cumulative distribution function (CDF) of the sam-
ple Fn(x) (where the index n stands for the number of data bins)
and the CDF of the reference distribution F(X) (Lista 2017). The
KS statistic or d-value measures the maximum vertical distance
between the two CDFs:

dn = sup
x

|Fn(x) � F(x)|. (28)

The null hypothesis, namely that Fn is a random realisation of
the model distribution F, is rejected at confidence level (1�↵) if
dn > d↵, where ↵ is the frequentist probability for a false rejec-
tion of the null hypothesis. For details on the critical values d↵,
refer to Feller (1948) and Smirnov (1948).

However, if either the form or the parameters of the model
distribution F(x) are determined from the data, the tabulated crit-
ical values provided in these references do not apply. One rather
has to apply Monte Carlo methods to determine them. We thus
simulate realisations of the hypothesised distribution and calcu-
late the 99% confidence level (C.L.) of the resulting value of d↵,
which will serve as our critical values for rejecting the null hy-
pothesis that the theoretical distribution matches the measured
data.

The CDFs of the counts-in-cells for data, random mocks and
three theoretical models are shown on the right hand side pan-
els of Fig. 5. Table 4 presents the measured test statistic d and
its critical values d↵ with ↵ = 0.01 for various spatial masks
and flux density thresholds. We see that all d-values for the Pois-
son distribution at all flux density thresholds are significantly
higher than the critical values, leading to the rejection of the
Poisson distribution with very high confidence (> 99% C.L.).
This is consistent with the results of the reduced Chi-square
test discussed above. Similarly, for the compound Poisson dis-
tribution, the measured d-values are twice to trice as large as
the critical values, allowing us to exclude this distribution across
all flux density thresholds and spatial masks. For both the Pois-
son and compound Poisson distributions, we used 1000 Monte
Carlo realizations to calculate the critical d-values, as the mea-
sured values were already significantly larger, reducing the need
for extreme precision in handling outliers. However, for the neg-
ative binomial case, where the measured and critical d-values
are closer to each other – particularly for masks 1219 and 1017
– we increased the number of realizations to 10 000 to account
for potential outliers and ensure greater accuracy. For the neg-
ative binomial distribution with mask d, to the lower observed
d-values compared to the compound Poisson distribution sug-
gest that the negative binomial distribution is preferred, but it is
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Fig. 7. Fitted single power law for variance variations of re-scaling HEALPix maps for Nside = 16 � 512 corresponding to 3.8 deg to 0.11 deg at
di↵erent flux density thresholds (left) and for Nside = 16 � 256 corresponding to 3.8 deg to 0.23 deg (right), plotted for Nside = 16 � 2048, which
means the fit was not performed for the fainter data points.

Fig. 8. Fitted single power law for variance variations of re-scaling HEALPix maps for Nside = 16 � 512 (left) and for Nside = 16 � 256 (right)
at flux density threshold 2 mJy and di↵erent SNR cuts plotted for Nside = 16 � 2048 (solid points represent the data points for which fits were
performed).

Fig. 9. Fitting results for power laws to di↵erent angular ranges at 2 mJy
flux density threshold and SNR 7.5. (dashed lines). The dots represent
the results of direct measurements of the two-point correlation function
using the Landy-Szalay estimator. The inner plot shows the 1� and 2�
contours for amplitude and exponent of the power laws.

to 512, corresponding to angular scales spanning from 3.8 de-

grees down to 0.11 degrees. Similarly, we perform this analysis
over Nside values from 16 to 256, corresponding to angular scales
ranging from 3.8 degrees down to 0.23 degrees.

The fitting parameters and results of the reduced chi-square
test at di↵erent flux density thresholds are presented in Table 5.
Fig. 7 illustrates the best fit values for � across varying flux den-
sity thresholds for the two fitted angular distance ranges (3.8-
0.11 degrees and 3.8-0.23 degrees), but plotted down to 0.03
degrees. As seen, at higher flux density thresholds, there is a
decrease in amplitude and an increase in the slope of the power
law, with indicating better fits in these cases. This steeper slope
for higher flux density thresholds might be attributed to the dom-
inance of AGNs at higher flux density thresholds.

Drawing from the completeness discussions found in Hale
et al. (2024), Section 3.2.3, we examine the fitting results for
di↵erent signal-to-noise ratios ‘SNR’, defined as peak flux den-
sity/rms, where the threshold for the integrated flux density is set
to 2 mJy (see the fitting results in Table 6). As shown in Fig. 8,
there is a slight decreasing trend in the slope as the SNR thresh-
olds increase. Notably, these fits exhibit a closer alignment with
lower Nside, which correspond to larger spatial scales. Higher
SNRs tend to result in better fits. Table 6 contains the fitting
parameters and the results of the reduced chi-square test for the
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Fig. 7. Fitted single power law for variance variations of re-scaling HEALPix maps for Nside = 16 � 512 corresponding to 3.8 deg to 0.11 deg at
di↵erent flux density thresholds (left) and for Nside = 16 � 256 corresponding to 3.8 deg to 0.23 deg (right), plotted for Nside = 16 � 2048, which
means the fit was not performed for the fainter data points.

Fig. 8. Fitted single power law for variance variations of re-scaling HEALPix maps for Nside = 16 � 512 (left) and for Nside = 16 � 256 (right)
at flux density threshold 2 mJy and di↵erent SNR cuts plotted for Nside = 16 � 2048 (solid points represent the data points for which fits were
performed).

Fig. 9. Fitting results for power laws to di↵erent angular ranges at 2 mJy
flux density threshold and SNR 7.5. (dashed lines). The dots represent
the results of direct measurements of the two-point correlation function
using the Landy-Szalay estimator. The inner plot shows the 1� and 2�
contours for amplitude and exponent of the power laws.

to 512, corresponding to angular scales spanning from 3.8 de-

grees down to 0.11 degrees. Similarly, we perform this analysis
over Nside values from 16 to 256, corresponding to angular scales
ranging from 3.8 degrees down to 0.23 degrees.

The fitting parameters and results of the reduced chi-square
test at di↵erent flux density thresholds are presented in Table 5.
Fig. 7 illustrates the best fit values for � across varying flux den-
sity thresholds for the two fitted angular distance ranges (3.8-
0.11 degrees and 3.8-0.23 degrees), but plotted down to 0.03
degrees. As seen, at higher flux density thresholds, there is a
decrease in amplitude and an increase in the slope of the power
law, with indicating better fits in these cases. This steeper slope
for higher flux density thresholds might be attributed to the dom-
inance of AGNs at higher flux density thresholds.

Drawing from the completeness discussions found in Hale
et al. (2024), Section 3.2.3, we examine the fitting results for
di↵erent signal-to-noise ratios ‘SNR’, defined as peak flux den-
sity/rms, where the threshold for the integrated flux density is set
to 2 mJy (see the fitting results in Table 6). As shown in Fig. 8,
there is a slight decreasing trend in the slope as the SNR thresh-
olds increase. Notably, these fits exhibit a closer alignment with
lower Nside, which correspond to larger spatial scales. Higher
SNRs tend to result in better fits. Table 6 contains the fitting
parameters and the results of the reduced chi-square test for the
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Table 1. Number of sources and fractions of photometric and spectroscopic redshifts in three LoTSS deep fields.

S min Boötes Boötes Boötes LH LH LH EN1 EN1 EN1
mJy N fphoto fspec N fphoto fspec N fphoto fspec
0.0 19179 0.95 0.21 31162 0.97 0.05 31610 0.96 0.05
0.5 7991 0.95 0.28 9356 0.96 0.10 5591 0.96 0.16
1.0 2939 0.93 0.31 3464 0.94 0.17 2091 0.94 0.26
1.5 1848 0.92 0.31 2169 0.93 0.18 1287 0.94 0.31
2.0 1379 0.91 0.31 1617 0.92 0.19 968 0.93 0.34
4.0 791 0.92 0.30 948 0.91 0.19 555 0.93 0.36
8.0 491 0.92 0.29 615 0.89 0.20 370 0.93 0.41

Notes. S min denotes the flux density threshold, N the number of sources, and f the fraction of sources having photometric redshift pdfs and
spectroscopic redshift measurements, respectively.

Fig. 1. Example photo-z redshift posterior distributions of some sources
from each of the three LoTSS Deep Fields (coded by colour and line-
style).

with the wide field LoTSS-DR1 (Shimwell et al. 2019). We es-
timate the clustering length in section 4. Finally, in section 5 we
present our conclusions.

2. Redshift distribution from LoTSS Deep Fields

We consider the task of obtaining a redshift distribution function
from the LoTSS-DF-DR1 (Tasse et al. 2021; Sabater et al. 2021).
Located in some of the best-studied northern extra-galactic sur-
vey fields — Boötes, European Large Area Infrared Survey field
North 1 (ELAIS-N1 or EN1), and the Lockman Hole (LH) —
the LoTSS Deep Fields data reach a rms sensitivity of ⇠ 32, 20,
22 µJy/beam at a central frequency of 144 MHz for Boötes and
LH, and at 146 MHz for EN1, respectively (Tasse et al. 2021;
Sabater et al. 2021).

For the three deep fields multi-wavelength observations are
available for di↵erent fractions of field of view. They cover the
infrared, optical and X-ray and together allow us to identify and
match 96% of the radio sources within about 26 square degrees
of sky (Kondapally et al. 2021). In all three fields, the multi-
wavelength matched aperture photometry used for source identi-
fication and photometric redshift analysis spans from the UV to
mid-infrared, however the exact set of filters and their associated
sensitivity varies from field to field (Kondapally et al. 2021, see
also Fig. 1 of Duncan et al. 2021).

The photometric redshifts were obtained using a hybrid
method that combines both template fitting and machine-
learning estimates to produce a consensus redshift estimates and
associated calibrated uncertainties. The full methodology is pre-
sented in Duncan et al. (2021), here we briefly summarise the
implementation. Three di↵erent template based estimations are
calculated using the EAZY software (Brammer et al. 2008) with
three di↵erent template sets chosen to represent a range of dif-
ferent spectral energy distributions expected in the radio popu-
lation, including both stellar only emission and combined stellar
and active galactic nuclei (AGN) emission (Duncan et al. 2018a).
The individual template fitting results are separately optimised
using zero-point o↵sets calculated from the spectroscopic red-
shift sample in each field and the posterior redshift predictions
calibrated such that they accurately represent the uncertainties
in the estimates. Next, additional machine-learning estimates are
produced using the Gaussian process redshift code, GPz (Almos-
allam et al. 2016b,a), with training and prediction performed
separately for each field using the respective photometry and
spectroscopic training samples.

Finally, the individual template and machine-learning esti-
mates are then combined following the hierarchical Bayesian
combination method presented in Dahlen et al. (2013), incor-
porating the additional improvements outlined in Duncan et al.
(2018a,b). The consensus photometric redshift posteriors for an
individual galaxy, pi(z), are evaluated onto a grid based on the
initial redshift steps used for template fitting, spanning from
0  z  7. A sample of photometric redshift pdfs for nine ran-
domly selected sources, three from each of the three deep fields,
is shown in Fig. 1. As the figure demonstrates, the posterior pdf
of many sources has a well defined peak, e.g. the sources indi-
cated by the green full line, the red line with dots, or the pur-
ple dashed line, while other posterior pdfs are multi modal, e.g.
the sources shown by the blue and orange full lines. For other
sources, like the ones indicated by the pink dashed line and the
grey line with dots, it is clear that they are at z > 1, with a broad
redshift distribution.

Table 1 shows the number of radio sources for various flux
density thresholds per deep field and the fraction of sources with
photometric and spectroscopic redshifts (not used in this work,
but included in Hale et al. 2024; Nakoneczny et al. 2023). Note
that these numbers do not include any quality assessments, be-
sides the mere existence of the posterior photo-z estimate. The
degree of completeness of the photometric redshifts decreases
with increasing flux density from 96% below 0.5 mJy to 91% at
8 mJy. The brighter sources are almost exclusively AGN (Best
et al. 2023), a population that extends to high redshifts where
multi-wavelength data become incomplete. Introducing a flux
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Fig. 3. Redshift distribution for individual LoTSS Deep Fields, pf (z), and their weighted sum, p(z), using photo-z pdfs from LoTSS Deep Fields
DR1 for flux density thresholds of 1, 2, 4 and 8 mJy, respectively (top left to bottom right panels). Uncertainties are estimated by bootstrap
resampling.

Fig. 4. Comparison of p(z) from T-RECS medium deep field and COS-
MOS 3 GHz survey (scaled to 144 MHz) with LoTSS Deep Fields DR1
weighted sum p(z) for a flux density threshold of 1 mJy.

variance. A comparison with Fig. 2 shows that the pronounced
peak in the redshift range 1 to 2 turns into an increased un-

certainty on the pdfs in that range when the pdfs of individual
sources are stacked.

In Fig. 4, we also compare our results to estimates of the
redshift distribution for radio galaxies from COSMOS field
(Smolčić et al. 2017) — after scaling the flux density S / ⌫↵
with an assumed spectral index of ↵ = �0.8 and applying equiva-
lent flux density thresholds, and the T-RECS simulation (Bonaldi
et al. 2023). We find only reasonable agreement of our weighted
sum p(z) with the p(z) estimated from these two references. The
T-RECS simulation shows an excess of sources at 1 < z < 2
and a deficit at small redshifts compared to our results. The
p(z) estimated from the COSMOS field is in agreement with our
weighted sum p(z) except at around redshift values of 1. Note
that the LoTSS Deep Field sample contains about an order of
magnitude more sources than the COSMOS field at correspond-
ing flux density thresholds and should therefore be less a↵ected
by cosmic variance.

3. Angular two-point correlation from LoTSS-DR1

The angular two-point correlation function, w(✓), quantifies the
angular clustering of extra-galactic sources (Peebles 1980). It
measures the excess probability of finding a source in the vicin-
ity of another source, separated by an angle ✓. In case of Pois-
son distributed point sources this function would be zero. In this
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Table 1. Number of sources and fractions of photometric and spectroscopic redshifts in three LoTSS deep fields.

S min Boötes Boötes Boötes LH LH LH EN1 EN1 EN1
mJy N fphoto fspec N fphoto fspec N fphoto fspec
0.0 19179 0.95 0.21 31162 0.97 0.05 31610 0.96 0.05
0.5 7991 0.95 0.28 9356 0.96 0.10 5591 0.96 0.16
1.0 2939 0.93 0.31 3464 0.94 0.17 2091 0.94 0.26
1.5 1848 0.92 0.31 2169 0.93 0.18 1287 0.94 0.31
2.0 1379 0.91 0.31 1617 0.92 0.19 968 0.93 0.34
4.0 791 0.92 0.30 948 0.91 0.19 555 0.93 0.36
8.0 491 0.92 0.29 615 0.89 0.20 370 0.93 0.41

Notes. S min denotes the flux density threshold, N the number of sources, and f the fraction of sources having photometric redshift pdfs and
spectroscopic redshift measurements, respectively.

Fig. 1. Example photo-z redshift posterior distributions of some sources
from each of the three LoTSS Deep Fields (coded by colour and line-
style).

with the wide field LoTSS-DR1 (Shimwell et al. 2019). We es-
timate the clustering length in section 4. Finally, in section 5 we
present our conclusions.

2. Redshift distribution from LoTSS Deep Fields

We consider the task of obtaining a redshift distribution function
from the LoTSS-DF-DR1 (Tasse et al. 2021; Sabater et al. 2021).
Located in some of the best-studied northern extra-galactic sur-
vey fields — Boötes, European Large Area Infrared Survey field
North 1 (ELAIS-N1 or EN1), and the Lockman Hole (LH) —
the LoTSS Deep Fields data reach a rms sensitivity of ⇠ 32, 20,
22 µJy/beam at a central frequency of 144 MHz for Boötes and
LH, and at 146 MHz for EN1, respectively (Tasse et al. 2021;
Sabater et al. 2021).

For the three deep fields multi-wavelength observations are
available for di↵erent fractions of field of view. They cover the
infrared, optical and X-ray and together allow us to identify and
match 96% of the radio sources within about 26 square degrees
of sky (Kondapally et al. 2021). In all three fields, the multi-
wavelength matched aperture photometry used for source identi-
fication and photometric redshift analysis spans from the UV to
mid-infrared, however the exact set of filters and their associated
sensitivity varies from field to field (Kondapally et al. 2021, see
also Fig. 1 of Duncan et al. 2021).

The photometric redshifts were obtained using a hybrid
method that combines both template fitting and machine-
learning estimates to produce a consensus redshift estimates and
associated calibrated uncertainties. The full methodology is pre-
sented in Duncan et al. (2021), here we briefly summarise the
implementation. Three di↵erent template based estimations are
calculated using the EAZY software (Brammer et al. 2008) with
three di↵erent template sets chosen to represent a range of dif-
ferent spectral energy distributions expected in the radio popu-
lation, including both stellar only emission and combined stellar
and active galactic nuclei (AGN) emission (Duncan et al. 2018a).
The individual template fitting results are separately optimised
using zero-point o↵sets calculated from the spectroscopic red-
shift sample in each field and the posterior redshift predictions
calibrated such that they accurately represent the uncertainties
in the estimates. Next, additional machine-learning estimates are
produced using the Gaussian process redshift code, GPz (Almos-
allam et al. 2016b,a), with training and prediction performed
separately for each field using the respective photometry and
spectroscopic training samples.

Finally, the individual template and machine-learning esti-
mates are then combined following the hierarchical Bayesian
combination method presented in Dahlen et al. (2013), incor-
porating the additional improvements outlined in Duncan et al.
(2018a,b). The consensus photometric redshift posteriors for an
individual galaxy, pi(z), are evaluated onto a grid based on the
initial redshift steps used for template fitting, spanning from
0  z  7. A sample of photometric redshift pdfs for nine ran-
domly selected sources, three from each of the three deep fields,
is shown in Fig. 1. As the figure demonstrates, the posterior pdf
of many sources has a well defined peak, e.g. the sources indi-
cated by the green full line, the red line with dots, or the pur-
ple dashed line, while other posterior pdfs are multi modal, e.g.
the sources shown by the blue and orange full lines. For other
sources, like the ones indicated by the pink dashed line and the
grey line with dots, it is clear that they are at z > 1, with a broad
redshift distribution.

Table 1 shows the number of radio sources for various flux
density thresholds per deep field and the fraction of sources with
photometric and spectroscopic redshifts (not used in this work,
but included in Hale et al. 2024; Nakoneczny et al. 2023). Note
that these numbers do not include any quality assessments, be-
sides the mere existence of the posterior photo-z estimate. The
degree of completeness of the photometric redshifts decreases
with increasing flux density from 96% below 0.5 mJy to 91% at
8 mJy. The brighter sources are almost exclusively AGN (Best
et al. 2023), a population that extends to high redshifts where
multi-wavelength data become incomplete. Introducing a flux
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Fig. 3. Redshift distribution for individual LoTSS Deep Fields, pf (z), and their weighted sum, p(z), using photo-z pdfs from LoTSS Deep Fields
DR1 for flux density thresholds of 1, 2, 4 and 8 mJy, respectively (top left to bottom right panels). Uncertainties are estimated by bootstrap
resampling.

Fig. 4. Comparison of p(z) from T-RECS medium deep field and COS-
MOS 3 GHz survey (scaled to 144 MHz) with LoTSS Deep Fields DR1
weighted sum p(z) for a flux density threshold of 1 mJy.

variance. A comparison with Fig. 2 shows that the pronounced
peak in the redshift range 1 to 2 turns into an increased un-

certainty on the pdfs in that range when the pdfs of individual
sources are stacked.

In Fig. 4, we also compare our results to estimates of the
redshift distribution for radio galaxies from COSMOS field
(Smolčić et al. 2017) — after scaling the flux density S / ⌫↵
with an assumed spectral index of ↵ = �0.8 and applying equiva-
lent flux density thresholds, and the T-RECS simulation (Bonaldi
et al. 2023). We find only reasonable agreement of our weighted
sum p(z) with the p(z) estimated from these two references. The
T-RECS simulation shows an excess of sources at 1 < z < 2
and a deficit at small redshifts compared to our results. The
p(z) estimated from the COSMOS field is in agreement with our
weighted sum p(z) except at around redshift values of 1. Note
that the LoTSS Deep Field sample contains about an order of
magnitude more sources than the COSMOS field at correspond-
ing flux density thresholds and should therefore be less a↵ected
by cosmic variance.

3. Angular two-point correlation from LoTSS-DR1

The angular two-point correlation function, w(✓), quantifies the
angular clustering of extra-galactic sources (Peebles 1980). It
measures the excess probability of finding a source in the vicin-
ity of another source, separated by an angle ✓. In case of Pois-
son distributed point sources this function would be zero. In this
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be estimated from radio fluxes. At present, we do not have optical
identifications and photometric redshift estimates for most of the
LoTSS DR2 sources. Therefore, we need to model the underlying
p(z) in a more indirect way.

Extragalactic radio sources consist mostly of SFGs and
AGNs, although their fractions vary with both redshift and flux
density (see Best et al. 2023). However, limitations in the multi-
wavelength coverage of the sample may lead to some uncertainty
in the redshifts and classification of sources. In order to cal-
ibrate the redshift distribution of our sample, we make use of
the LOFAR deep fields observations (Tasse et al. 2021; Sabater
et al. 2021). The Deep Field data consist of three fields: Boötes,
ELAIS and Lockman Hole. For each field, a smaller region was
defined for which there exists deep multi-wavelength informa-
tion, of an area equal to 8.6 deg2 in the Boötes field, 6.7 deg2 in
ELAIS and 10.3 deg2 in the Lockman Hole field (Kondapally
et al. 2021; Duncan et al. 2021). A redshift and its probabil-
ity density function were associated with each source using
a hybrid method that combined template fitting and machine
learning (further details can be found in Duncan et al. 2021).
The photometric redshift quality is characterised by normalised
median absolute deviation (�NMAD) ranging from 1.6 to 2% for
galaxies and 6.4 to 7% for AGNs, while the outlier fraction
(|zphot � zspec|/(1 + zspec) > 0.15) equals around 2% for galax-
ies and 20% for AGNs. It is worth noting that ⇠ 5% of the
sources satisfying our sample cuts in the deep fields do not have
an optical cross-match.

We estimate the redshift distribution for each flux density cut
catalogue using a technique based on sampling redshift values
from the probability distributions of photometric redshifts, using
spectroscopic redshifts where available. Given the full prob-
ability distribution over a redshift range for each photometric
redshift measurement, we sample a single redshift value over this
probability for each object, and build a histogram of such a dis-
tribution, binning in �z = 0.05. For objects with spectroscopic
redshifts available, we always take the reported value (i.e. equiv-
alent to zero photo-z uncertainty). We repeat this procedure of
histogram creation for each deep field separately, and the number
of histograms created for each field is proportional to the number
of objects in each field, which makes fields with more observa-
tions more significant in the final estimate. We find that the final
results do not change after sampling at least 200 histograms in
total. The final distribution and its statistical uncertainty is given
by the mean and standard deviation calculated over all histogram
realisations, and then normalised to a unit integral over the
redshift range 0 < z < 6. This approach to redshift distribution
is also described in Hale et al. (in prep.). The method is able
to combine both photometric and spectroscopic redshifts, and
ensures a reasonable estimate of the final uncertainty in the
redshift distribution. The uncertainty estimated with this method
accounts both for errors in every single measurement of the
photometric redshift, and for differences in redshift distributions
between the three deep fields. We found that the errors estimated
with this method are significantly larger in comparison to boot-
strap sampling over the probability distributions of photometric
redshifts, where single redshift distributions are calculated
as a sum of probability distributions within the bootstrap
samples, and uncertainty is taken as a standard deviation within
those.

We model the resulting redshift distribution using a func-
tional form
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Table 1. Constraints on the parameters of the redshift distribution, as
given in the Eq. (14), for the 1.5 mJy and 2.0 mJy samples.

Sample z0 r a

1.5 mJy 0.05 ± 0.01 0.20 ± 0.03 4.9 ± 0.1
2.0 mJy 0.04 ± 0.01 0.17 ± 0.03 5.0 ± 0.1

Fig. 2. Redshift distribution based on the three deep fields located
within the LoTSS DR2 footprint, for 2 mJy and 1.5 mJy flux cuts. The
thick lines show the models fitted with Eq. (14), and the shaded areas
are a 1� region from the deep fields measurements. The redshift distri-
bution is limited to z < 6.

normalised to a unit integral over the redshift range 0 < z < 6,
with {z0, r, a} being free parameters. This form is motivated by
the fact that the LoTSS radio sources contain two main popula-
tions of objects, AGNs, and SFGs. At low redshifts, we expect
their numbers to grow proportionally to the volume for both pop-
ulations, which motivates the factor of z

2, which would be exact
for any redshift in a de Sitter model. The factor 1/(1 + z) pro-
vides a simple correction for a ⇤CDM model, and gives a good
approximation up to the redshift of ⇠ 0.2. For higher redshifts,
the flux density limitation of the sample becomes the dominant
aspect, and the form of the luminosity function for each popula-
tion starts to be important. The AGN radio luminosity function is
typically approximated by a double power law, which motivates
the power law term, while the SFG radio luminosity function is
typically modelled as a Schechter function (Bonato et al. 2017),
which exhibits an exponential cut-off, and motivates the first
term. The relative fraction of both contributions is controlled by
the parameter r. We verified that this three-parameter model pro-
vides a good semi-empirical fit and is superior to other simple
parameterisations that have been tested. Table 1 shows the con-
strained parameters, based on the uncertainties mentioned above,
for the 1.5 mJy and 2.0 mJy samples, while Fig. 2 shows the
resulting redshift distributions. The blue and orange bands show
the 1� constraints measured from the deep fields for the 1.5 mJy
and 2 mJy cuts, respectively, with the corresponding solid lines
showing the best-fit model of Eq. (14) in each case.

4.3. Bias models

Given the wide range of redshifts covered by the samples stud-
ied, the evolution of the linear galaxy bias over that range must
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be estimated from radio fluxes. At present, we do not have optical
identifications and photometric redshift estimates for most of the
LoTSS DR2 sources. Therefore, we need to model the underlying
p(z) in a more indirect way.

Extragalactic radio sources consist mostly of SFGs and
AGNs, although their fractions vary with both redshift and flux
density (see Best et al. 2023). However, limitations in the multi-
wavelength coverage of the sample may lead to some uncertainty
in the redshifts and classification of sources. In order to cal-
ibrate the redshift distribution of our sample, we make use of
the LOFAR deep fields observations (Tasse et al. 2021; Sabater
et al. 2021). The Deep Field data consist of three fields: Boötes,
ELAIS and Lockman Hole. For each field, a smaller region was
defined for which there exists deep multi-wavelength informa-
tion, of an area equal to 8.6 deg2 in the Boötes field, 6.7 deg2 in
ELAIS and 10.3 deg2 in the Lockman Hole field (Kondapally
et al. 2021; Duncan et al. 2021). A redshift and its probabil-
ity density function were associated with each source using
a hybrid method that combined template fitting and machine
learning (further details can be found in Duncan et al. 2021).
The photometric redshift quality is characterised by normalised
median absolute deviation (�NMAD) ranging from 1.6 to 2% for
galaxies and 6.4 to 7% for AGNs, while the outlier fraction
(|zphot � zspec|/(1 + zspec) > 0.15) equals around 2% for galax-
ies and 20% for AGNs. It is worth noting that ⇠ 5% of the
sources satisfying our sample cuts in the deep fields do not have
an optical cross-match.

We estimate the redshift distribution for each flux density cut
catalogue using a technique based on sampling redshift values
from the probability distributions of photometric redshifts, using
spectroscopic redshifts where available. Given the full prob-
ability distribution over a redshift range for each photometric
redshift measurement, we sample a single redshift value over this
probability for each object, and build a histogram of such a dis-
tribution, binning in �z = 0.05. For objects with spectroscopic
redshifts available, we always take the reported value (i.e. equiv-
alent to zero photo-z uncertainty). We repeat this procedure of
histogram creation for each deep field separately, and the number
of histograms created for each field is proportional to the number
of objects in each field, which makes fields with more observa-
tions more significant in the final estimate. We find that the final
results do not change after sampling at least 200 histograms in
total. The final distribution and its statistical uncertainty is given
by the mean and standard deviation calculated over all histogram
realisations, and then normalised to a unit integral over the
redshift range 0 < z < 6. This approach to redshift distribution
is also described in Hale et al. (in prep.). The method is able
to combine both photometric and spectroscopic redshifts, and
ensures a reasonable estimate of the final uncertainty in the
redshift distribution. The uncertainty estimated with this method
accounts both for errors in every single measurement of the
photometric redshift, and for differences in redshift distributions
between the three deep fields. We found that the errors estimated
with this method are significantly larger in comparison to boot-
strap sampling over the probability distributions of photometric
redshifts, where single redshift distributions are calculated
as a sum of probability distributions within the bootstrap
samples, and uncertainty is taken as a standard deviation within
those.

We model the resulting redshift distribution using a func-
tional form
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Table 1. Constraints on the parameters of the redshift distribution, as
given in the Eq. (14), for the 1.5 mJy and 2.0 mJy samples.

Sample z0 r a

1.5 mJy 0.05 ± 0.01 0.20 ± 0.03 4.9 ± 0.1
2.0 mJy 0.04 ± 0.01 0.17 ± 0.03 5.0 ± 0.1

Fig. 2. Redshift distribution based on the three deep fields located
within the LoTSS DR2 footprint, for 2 mJy and 1.5 mJy flux cuts. The
thick lines show the models fitted with Eq. (14), and the shaded areas
are a 1� region from the deep fields measurements. The redshift distri-
bution is limited to z < 6.

normalised to a unit integral over the redshift range 0 < z < 6,
with {z0, r, a} being free parameters. This form is motivated by
the fact that the LoTSS radio sources contain two main popula-
tions of objects, AGNs, and SFGs. At low redshifts, we expect
their numbers to grow proportionally to the volume for both pop-
ulations, which motivates the factor of z

2, which would be exact
for any redshift in a de Sitter model. The factor 1/(1 + z) pro-
vides a simple correction for a ⇤CDM model, and gives a good
approximation up to the redshift of ⇠ 0.2. For higher redshifts,
the flux density limitation of the sample becomes the dominant
aspect, and the form of the luminosity function for each popula-
tion starts to be important. The AGN radio luminosity function is
typically approximated by a double power law, which motivates
the power law term, while the SFG radio luminosity function is
typically modelled as a Schechter function (Bonato et al. 2017),
which exhibits an exponential cut-off, and motivates the first
term. The relative fraction of both contributions is controlled by
the parameter r. We verified that this three-parameter model pro-
vides a good semi-empirical fit and is superior to other simple
parameterisations that have been tested. Table 1 shows the con-
strained parameters, based on the uncertainties mentioned above,
for the 1.5 mJy and 2.0 mJy samples, while Fig. 2 shows the
resulting redshift distributions. The blue and orange bands show
the 1� constraints measured from the deep fields for the 1.5 mJy
and 2 mJy cuts, respectively, with the corresponding solid lines
showing the best-fit model of Eq. (14) in each case.

4.3. Bias models

Given the wide range of redshifts covered by the samples stud-
ied, the evolution of the linear galaxy bias over that range must
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be estimated from radio fluxes. At present, we do not have optical
identifications and photometric redshift estimates for most of the
LoTSS DR2 sources. Therefore, we need to model the underlying
p(z) in a more indirect way.

Extragalactic radio sources consist mostly of SFGs and
AGNs, although their fractions vary with both redshift and flux
density (see Best et al. 2023). However, limitations in the multi-
wavelength coverage of the sample may lead to some uncertainty
in the redshifts and classification of sources. In order to cal-
ibrate the redshift distribution of our sample, we make use of
the LOFAR deep fields observations (Tasse et al. 2021; Sabater
et al. 2021). The Deep Field data consist of three fields: Boötes,
ELAIS and Lockman Hole. For each field, a smaller region was
defined for which there exists deep multi-wavelength informa-
tion, of an area equal to 8.6 deg2 in the Boötes field, 6.7 deg2 in
ELAIS and 10.3 deg2 in the Lockman Hole field (Kondapally
et al. 2021; Duncan et al. 2021). A redshift and its probabil-
ity density function were associated with each source using
a hybrid method that combined template fitting and machine
learning (further details can be found in Duncan et al. 2021).
The photometric redshift quality is characterised by normalised
median absolute deviation (�NMAD) ranging from 1.6 to 2% for
galaxies and 6.4 to 7% for AGNs, while the outlier fraction
(|zphot � zspec|/(1 + zspec) > 0.15) equals around 2% for galax-
ies and 20% for AGNs. It is worth noting that ⇠ 5% of the
sources satisfying our sample cuts in the deep fields do not have
an optical cross-match.

We estimate the redshift distribution for each flux density cut
catalogue using a technique based on sampling redshift values
from the probability distributions of photometric redshifts, using
spectroscopic redshifts where available. Given the full prob-
ability distribution over a redshift range for each photometric
redshift measurement, we sample a single redshift value over this
probability for each object, and build a histogram of such a dis-
tribution, binning in �z = 0.05. For objects with spectroscopic
redshifts available, we always take the reported value (i.e. equiv-
alent to zero photo-z uncertainty). We repeat this procedure of
histogram creation for each deep field separately, and the number
of histograms created for each field is proportional to the number
of objects in each field, which makes fields with more observa-
tions more significant in the final estimate. We find that the final
results do not change after sampling at least 200 histograms in
total. The final distribution and its statistical uncertainty is given
by the mean and standard deviation calculated over all histogram
realisations, and then normalised to a unit integral over the
redshift range 0 < z < 6. This approach to redshift distribution
is also described in Hale et al. (in prep.). The method is able
to combine both photometric and spectroscopic redshifts, and
ensures a reasonable estimate of the final uncertainty in the
redshift distribution. The uncertainty estimated with this method
accounts both for errors in every single measurement of the
photometric redshift, and for differences in redshift distributions
between the three deep fields. We found that the errors estimated
with this method are significantly larger in comparison to boot-
strap sampling over the probability distributions of photometric
redshifts, where single redshift distributions are calculated
as a sum of probability distributions within the bootstrap
samples, and uncertainty is taken as a standard deviation within
those.

We model the resulting redshift distribution using a func-
tional form
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Table 1. Constraints on the parameters of the redshift distribution, as
given in the Eq. (14), for the 1.5 mJy and 2.0 mJy samples.

Sample z0 r a

1.5 mJy 0.05 ± 0.01 0.20 ± 0.03 4.9 ± 0.1
2.0 mJy 0.04 ± 0.01 0.17 ± 0.03 5.0 ± 0.1

Fig. 2. Redshift distribution based on the three deep fields located
within the LoTSS DR2 footprint, for 2 mJy and 1.5 mJy flux cuts. The
thick lines show the models fitted with Eq. (14), and the shaded areas
are a 1� region from the deep fields measurements. The redshift distri-
bution is limited to z < 6.

normalised to a unit integral over the redshift range 0 < z < 6,
with {z0, r, a} being free parameters. This form is motivated by
the fact that the LoTSS radio sources contain two main popula-
tions of objects, AGNs, and SFGs. At low redshifts, we expect
their numbers to grow proportionally to the volume for both pop-
ulations, which motivates the factor of z

2, which would be exact
for any redshift in a de Sitter model. The factor 1/(1 + z) pro-
vides a simple correction for a ⇤CDM model, and gives a good
approximation up to the redshift of ⇠ 0.2. For higher redshifts,
the flux density limitation of the sample becomes the dominant
aspect, and the form of the luminosity function for each popula-
tion starts to be important. The AGN radio luminosity function is
typically approximated by a double power law, which motivates
the power law term, while the SFG radio luminosity function is
typically modelled as a Schechter function (Bonato et al. 2017),
which exhibits an exponential cut-off, and motivates the first
term. The relative fraction of both contributions is controlled by
the parameter r. We verified that this three-parameter model pro-
vides a good semi-empirical fit and is superior to other simple
parameterisations that have been tested. Table 1 shows the con-
strained parameters, based on the uncertainties mentioned above,
for the 1.5 mJy and 2.0 mJy samples, while Fig. 2 shows the
resulting redshift distributions. The blue and orange bands show
the 1� constraints measured from the deep fields for the 1.5 mJy
and 2 mJy cuts, respectively, with the corresponding solid lines
showing the best-fit model of Eq. (14) in each case.

4.3. Bias models

Given the wide range of redshifts covered by the samples stud-
ied, the evolution of the linear galaxy bias over that range must
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• Semi-empirical model


• 2 populations:  
SFGs (Schechter), AGNs (power-law)


• At small z: counts are homogeneous in  
comoving volume,  in LCDM cosmology


• Probability distribution p(z) 

z2/(1 + z)
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Figure 2. Left: The re-calculated galaxy RLFs (dotted lines) for the smaller area considered here, compared with previously published
RLFs (solid lines). Middle: RLFs calculated by process rather than galaxy. Right top: RLFs calculated here by galaxy classifications
(dotted lines) and by physical process (solid lines; orange for AGN and green for SF). Bottom right: �RLF for both AGN and SF.
Hatched regions show where the uncertainties are large and values should be treated with caution.

Figure 3. The redshift evolution of the RLFs (top panels) and �RLF (bottom panels) for SF (left) and AGN (right). The dashed
horizontal line in the bottom panels is unity, with thin solid horizontal lines at 0.5 (left) at 2.0 (right) to guide the eye. To avoid
overcrowding, uncertainties are only plotted for �RLF, in the same manner as Fig. 2.
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• First process based 
radio luminosity 
function based on 
international baselines 
imaging of EN1


• AGN have been 
underestimated at low 
luminosities, especially 
at higher z


• SFGs have been 
overestimated at high 
luminosities, especially  
at high z



LoTSS-DR3
Stay tuned

Analysis ongoing, should be  
complete by end of the year  
Next steps: mosaic, source finding,  
source cross ids 
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Conclusions
Towards competitive cosmological constraints with LoTSS-DR3

• So far, understood nature and redshift 
distribution of sources


• So far, understood systematics for 
sources with SNR > 7.5 and  
flux density > 1.5 mJy


• DR3: Larger sky coverage will provide 
competitive cosmological parameters, 
detect integrated Sachs-Wolfe effect  
(so far only at best at  from Planck-RACS-low 
correlation), cosmic source count dipole, 
higher order statistics, …   

2.8σ
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Fig. 7. Constraints on �8 using Cgg` and Cg` at the fiducial ` <
(250, 500), the bg,D/D(z) bias modelling, HALOFIT matter power spec-
trum, and Planck cosmology assumed for parameters other than �8. The
top bar shows constraints form the LoTSS DR1 (Alonso et al. 2021),
and the three bottom bars present Planck (Planck Collaboration I 2020),
KiDS (Heymans et al. 2021), and DES (Abbott et al. 2022).

Figure 7 in the original paper had switched plus and minus val-
ues of the error bars. Figure 7 shows the correct results.
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