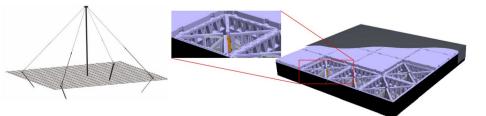
LOFAR 2.0 and the development of station test pipelines

Jun Wang

Astronomical Institute Ruhr-University Bochum, Germany jwang@astro.rub.de

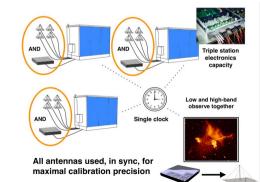
RUHR UNIVERSITÄT BOCHUM RUB

Jun Wang


Astronomical Institute

Ruhr University Bochum, Germany

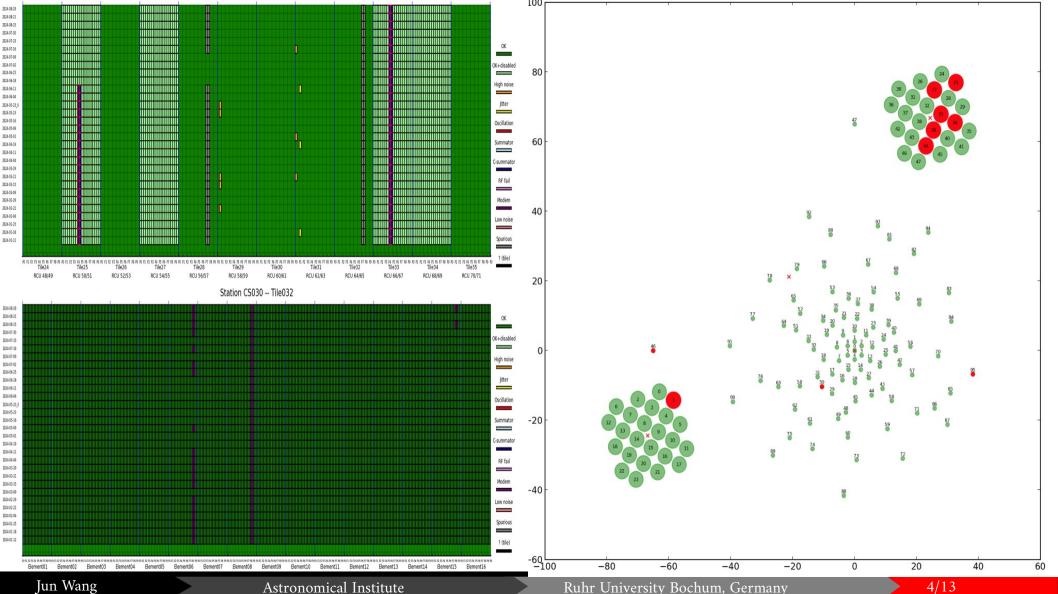
LOFAR & LOFAR 2.0


LOFAR: Low frequency array

- 52 stations across Europe.
- 10 MHz to 240 MHz.
 - Low Band Antenna (LBA): 10-90 MHz.
 - High Band Antenna (HBA): 110-240 MHz.
- LBA:
 - 96 LBAs at each LOFAR station.
 - In the Netherlands, only 48 LBA are used at once.
- HBA:
 - Analogue beam-forming in a tile.
 - CS: two 24-tile antenna fields (129 m apart),
 - HBA tile: 4 x 4 HBA elements.

LOFAR 2.0: An upgrade of LOFAR

- Simultaneous all LBA & all HBA observing.
- COBALT2.0: correlator and beam-former.
- White Rabbit: single clock to all NL stations.
- Italy & Bulgaria: new international stations.
- New software system:
 - TMSS : Telescope Manager Specification System.
 - Station Control and monitoring: Tango, Jupyter lab, Grafana,
 - ...
- New powerful hardware system:
 - UniBoard2
 - RCU2
 - Midplane
 - ...

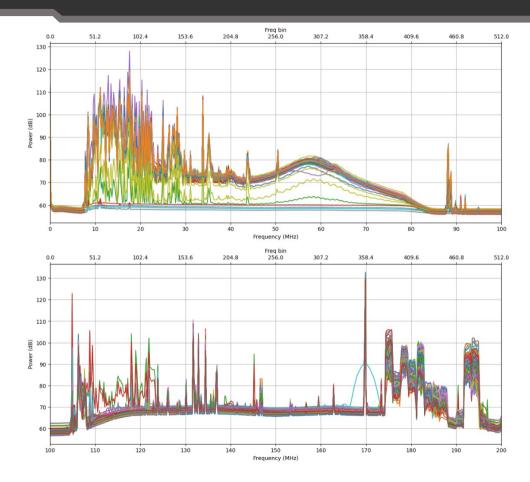


2/13

Jun Wang

How confident are you

in the data obtained using the antenna array?


Astronomical Institute

Ruhr University Bochum, Germany

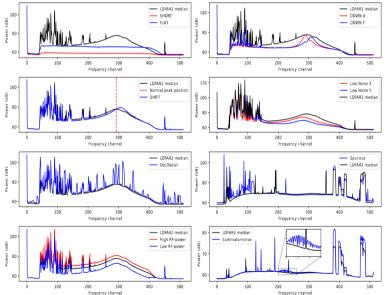
Motivation for LOFAR 2.0 monitoring and tests

➤ Why test antennas:

- Each station is a mini-array.
 - Thousands of antenna and element.
 - Diverse electronic component.
 - A distributed and complex station environment.
- System Reliability.
 - Active bad antennas/elements/electronics impair the system.
 - Identifying anomalies prevents disruptions in the array's operation.
- Data Quality Assurance.
 - Faulty antennas can introduce noise or errors, impacting overall data quality.
 - Anomalies in even a few antennas can skew data.
 - Post data quality checks are costly.
- Efficiency in Maintenance.
 - Early detection allows for timely maintenance, minimizing downtime.

Astronomical Institute

Ruhr University Bochum, Germany



Antenna tests with LOFAR 1

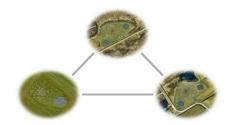
> Test types:

• LBA:

- Short, Flat, Down
- Spurious, Oscillation, Noise, RF_power,
- HBA:
 - Spurious, Oscillation, Noise, RF_power
 - Summator_noise
- Element:
 - Modem delays,
 - Spurious, Oscillation, Noise, RF_power
- Others:
 - Version check
 - RSP and TBB check

Features/Drawbacks:

- Text (Log and CSV) output.
- Only 48 antennas in each test circle.
- Offline tests occupy too much time.
- Make use of SST only.
- Limited real-time tests.
- RCUmode, RSP and TBB tests are not applicable in LOFAR 2.0.

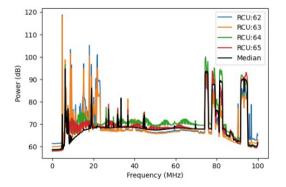

What do we need for a station tests with LOFAR 2.0:

> Requirements:

- Use all antennas
- Real **real-time** tests
- Simultaneous LBA & HBA test
- Fully harness of other statistic data
 - SST: subband statistic
 - BST: beamlet statistic
 - XST: crosslet statistic
- Use existing tests as much as possible.
- Develop new tests.
- Image output for easy check.

Test types for LOFAR 2.0

- **RTSM:** real-time station monitoring
 - Tests can be run during observation
 - All general test for LBA
 - General test for HBA tiles
- Dedicated HBA element-based Stationtest
 - Only HBA element tests
 - Switch on/off 16 elements in each tile
 - With different delays for each element.



RTSM: Real-time station monitoring

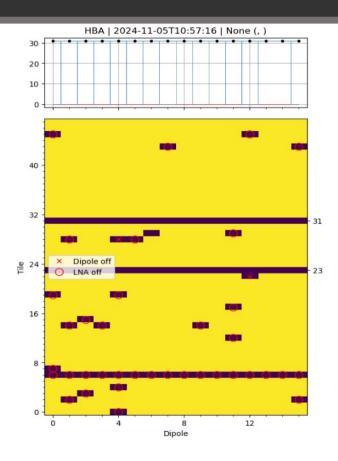
Real-Time Station Monitoring

- **Real-time** monitoring during observation.
 - Each circle lasts ~45 seconds (longer circle period can be set as well.).
 - Start/stop time can be pre-defined.
 - Easy to skip some of the tests.
- **Simultaneously** LBA and HBA tests.
 - Test 96 LBA and 48/96 HBA in one time, rather than three.
- At LBA antenna level and HBA tile level.
- Broken and Beyond Repair antennas not reported again.
- Log history and abnormal spectrum (CSV format) are recorded.
- **SST**-related tests:
 - Short, flat, down
 - Spurious, Oscillation, Noise, RF_power, Current_Voltages
 - Summator_noise
- XST-related tests:
 - Polarization_swap.

»>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>> STATION-CHECK RESULTS for 20241105 <<<<<<<<<<
= csv (202411	
- Station name	
- Antenna type	
- Frequency band	: HBA_110_190
Check runtime	
- Bad antennas	: [23, 31]
UPA 110 100 CDU	RIOUS
	ant=31, rcu=62, rec-timestamp=2024-11-05 10:15:31
	ant=31, rcu=63, rec-timestamp=2024-11-05 10:15:31
	ant=32, rcu=64, rec-timestamp=2024-11-05 10:17:31
shaal, couptour	ant=32, rcu=65, rec-timestamp=2024-11-05 10:17:31

Ruhr University Bochum, Germany

Astronomical Institute

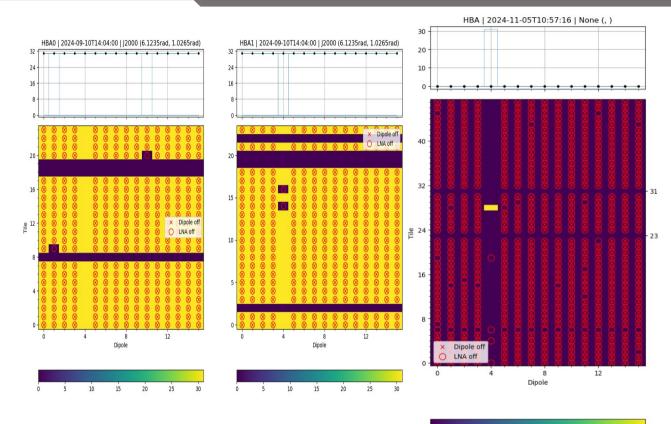

Stationtest: dedicated HBA element-based test

Stationtest (HBA element-based only)

- Modem
- 16 elements in each tile
 - Oscillation, spurious, noise, rf_power
 - polarization_swap, currents/voltages

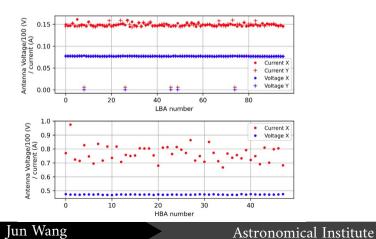
Stationtest procedure:

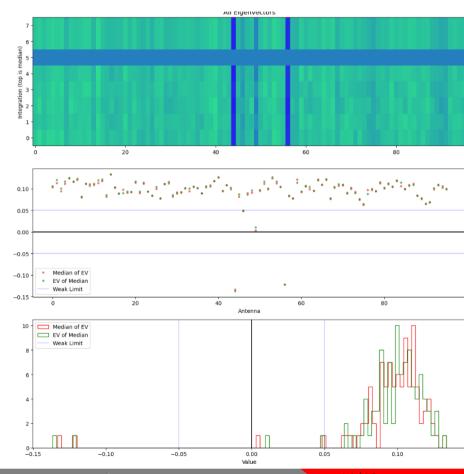
- Modem test:
 - Send hbadelays to all HBA element and then readback
 - Comparing readback delays with setting hbadelays
 - hbadelays: 0, 0.5, 1, 2, 4, 8, 16, 15.5 ns.
- Element test:
 - Turn on element 0 only in all HBA tiles, and do all test like RTSM
 - Turn on element 1-15 in turn, and redo the test.



Astronomical Institute

Output of the tests


➤ Log files


- One log file per day/observation
- Contains details tests results of all antennas.
- CSV files of anomalous antenna
 - One CSV file per day
 - Contains power spectral of only the anomalous antenna
- Plots of anomaly
 - Can decide plot or not.
 - Clear understanding of the anomalous antenna

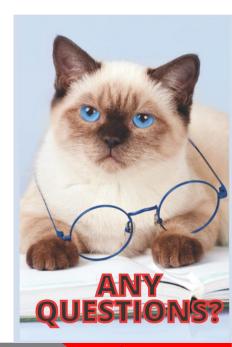
New tests for LOFAR 2.0

- LOFAR 2.0 makes new tests possible.
- Currents/Voltages:
 - Measure the current and voltage for short circuit or open circuit
- Polarization Swap:
 - Cables may swapped during assembly
 - Make use of XST data

Ruhr University Bochum, Germany

Summarize

- ➤ We have development new test pipelines for LOFAR 2.0
 - Simultaneous all LBA & all HBA test in one cycle
 - Make use of XST data for new tests.
 - Plots output enabled.
- Real-time station monitoring:
 - Real real-time tests during observation.
 - More tests can be taken with RTSM
- Dedicated HBA element-based Stationtest
 - Offline tests for a more specific check on HBA element
 - Modem test.
- New tests enabled in LOFAR 2.0
 - Currents and Voltages tests
 - Polarization swap check.


THANK YOU!!!

Jun Wang

Summarize

- ➤ We have development new test pipelines for LOFAR 2.0
 - Simultaneous all LBA & all HBA test in one cycle
 - Make use of XST data for new tests.
 - Plots output enabled.
- Real-time station monitoring:
 - Real real-time tests during observation.
 - More tests can be taken with RTSM
- Dedicated HBA element-based Stationtest
 - Offline tests for a more specific check on HBA element
 - Modem test.
- ➢ New tests enabled in LOFAR 2.0
 - Currents and Voltages tests
 - Polarization swap check.

