Detecting cosmic particles with radio telescopes

Katie Mulrey Radio2024 Symposium

K. Mulrey - Radio2024

NASA / ESA

transition region

K. Mulrey - Radio2024

- Second Galactic CR component?
- Influence of Galactic and extragalactic magnetic fields?
- Hadronic physics at energies beyond the reach of the LHC?
- Connections to other cosmic messengers (PeVatrons)?

... the picture is not yet clear

S. Thoudam et al, A&A 2016.

Challenge: CR trajectories are scrambled in magnetic fields

Cosmic-ray air showers

Cosmic-ray air showers

K. Mulrey - Radio2024

Challenge: distribution of Xmax values of different primaries naturally hard to distinguish

Radio emission from air showers

Cosmic rays at LOFAR

Low band (30-80 MHz)

~ 100s of antennas per event

particle trigger

K. Mulrey - Radio2024

triggering

P. Schellart et al., A&A 560, 98 (2013)

radio buffer readout ----- offline analysis

Cosmic rays at LOFAR

Low band (30-80 MHz)

~ 100s of antennas per event

CR event

K. Mulrey - Radio2024

triggering

P. Schellart et al., A&A 560, 98 (2013)

radio buffer readout ----- offline analysis

Cosmic rays at LOFAR

K. Mulrey - Radio2024

10 years of LOFAR analyses

Evidence of radio emission mechanisms Schellart et al. JCAP, 2014.

Circular polarization Scholten et al. Phys. Rev. D, 2016. Wavefront shape Corstanje et al. APP, 2014.

K. Mulrey - Radio2024

Buitink et al. Phys. Rev. D, 2014.

Buitink et al. Nature, 2016.

Corstanje et al. Phys. Rev. D., 2021.

GDAS simulated atmosphere Mitra et al. APP, 2020.

QGSJETII-04 energy (eV) K. Mulrey et al. 2020 radio-based MPV = -0.07 $\sigma = 0.35$ counts 1017 LOFAR -1.0 -0.5 0.0 0.5 1.0 2(Epart. - Eradio)/(Epart. + Eradio) 1018 1019 1017 LORA particle-based energy (eV)

Radio-based X_{max} reconstruction

Absolute antenna calibration Mulrey et al. APP, 2019.

Radio-based energy scale Mulrey et al. JCAP, 2020.

What's next?

Remaining challenges

- Determining composition based on X_{max} alone is hard
- Composition studies require high statistics
- Measuring in a wide energy range (especially lower!) weak radio signal

Ways to move forward

- Reconstruct entire air shower development, not just X_{max}
- Increase statistics
- Measure in a wider bandwidth (more info about shower)
- Increase antenna density / number

What's next?

Remaining challenges

- Determining composition based on X_{max} alone is hard
- Composition studies require high statistics
- Measuring in a wide energy range (especially lower!) weak radio signal

Ways to move forward

- Reconstruct entire air shower development, not just X_{max}
- Increase statistics
- Measure in a wider bandwidth (more info about shower)
- Increase antenna density / number

LOFAR 2.0 & SKA

• Sensitivity to hadronic interaction models

K. Mulrey - Radio2024

Beyond Xmax

Cosmic rays at LOFAR 2.0

•Key improvements:

- Statistics:

simultaneous observations for all antenna sets (10x increase)

- Shower development: un-beamformed HBA antennas

-Low energy showers: increased network speed

K. Mulrey - Radio2024

A. Nelles, 2015

Cosmic rays at LOFAR 2.0

Reconstruction of the air shower profile using IFT

IFT reconstruction of the radio footprint

LOFAR sensitivity to the air shower profile

K. Mulrey - Radio2024

K. Mulrey - Radio2024

Standard X_{max} reconstruction

K. Mulrey - Radio2024

+ L parameter

A. Corstanje et al., PoS(ARENA2022)024

• Can the SKA measure this?

K. Mulrey - Radio2024

Antenna decimation factor 4 SNR increase 2

• Can the SKA measure this?

K. Mulrey - Radio2024

Beamforming:

add waveforms from N antennas signal add coherently ~*N* background add incoherently ~srqt(*N*)

Antenna decimation factor 16 SNR increase 4

1e-11

• Can the SKA measure this?

K. Mulrey - Radio2024

Beamforming:

Antenna decimation factor 64 SNR increase

K. Mulrey - Radio2024

Potential layout of particle detector array at SKA-low

- Antenna field
- Particle detectors dense array (~100 units)
- Particle detectors ring (~50 units, optional)
- Particle detectors remote (~18 units, optional)

Prototype station @ Murchison Widefield Array (J. Bray et al., NIMPA 973, id. 164168 (2020))

2024: funding for CRs @ SKA!

Conclusions

- After a decade of LOFAR observations, LOFAR2.0 & SKA will let us continue do precision air shower reconstructions throughout the transition region
- Key unique improvements: bandwidth, antenna density, statistics
- Vital input (composition, energy) in the energy range of the highest energy Galactic accelerators

Thanks!

Event Reconstruction

• Total power within 55ns of peak

K. Mulrey - Radio2024

T. Huege et al. AIP Conf.Proc. 1535 (2013) no.1, 128

Event Reconstruction

- Simulate ~30 P and Fe showers with realistic atmosphere and known arrival direction (natural distribution of X_{max})
- Calculate reduced χ^2 for each simulation
- Parabola fit determines event X_{max}
- Resolution < 20 g/cm²

K. Mulrey - Radio2024

 $E_{\rm radio} = f_r \times E_{\rm sim}$

Free parameters: energy and core position

