POLAR: Simulations of the Epoch of Reionization for studying the Intergalactic Medium 21-cm signal

ANSHUMAN ACHARYA MAX PLANCK INSTITUTE FOR ASTROPHYSICS, GARCHING *Collaborators:*

Qing-Bo Ma (Guizhou Normal University), Sambit K. Giri (NORDITA),

Benedetta Ciardi (Max Planck Institute for Astrophysics), Raghunath Ghara (IISER Kolkata),

Garrelt Mellema (Stockholm University), Saleem Zaroubi (University of Groningen) and the LOFAR EoR team.

MAX-PLANCK-INSTITUT FÜR ASTROPHYSIK

POLAR: Simulations of the Epoch of Reionization for studying the Intergalactic Medium 21-cm signal

ANSHUMAN ACHARYA MAX PLANCK INSTITUTE FOR ASTROPHYSICS, GARCHING *Collaborators:*

Qing-Bo Ma (Guizhou Normal University), Sambit K. Giri (NORDITA),

Benedetta Ciardi (Max Planck Institute for Astrophysics), Raghunath Ghara (IISER Kolkata),

Garrelt Mellema (Stockholm University), Saleem Zaroubi (University of Groningen) and the LOFAR EoR team.

MAX-PLANCK-INSTITUT FÜR ASTROPHYSIK

POLAR What is the Epoch of Reionization?

History of the Universe.

POLAR What is the Epoch of Reionization?

History of the Universe.

POLAR What is the Epoch of Reionization?

- Period when clouds of neutral H reionised by:
	- ‣ the first stars and thus…
	- ‣ the first galaxies
	- ‣ black holes,
	- and more!

History of the Universe.

History of the Universe.

POLAR Why is the Epoch of Reionization important?

• Understanding the EoR helps in: understanding the formation and evolution of all astronomical objects.

• Timelines, processes, rates, etc.

History of the Universe.

POPA How to study the Epoch of Reionization?

• Using the…

POLAR: Simulations of the Epoch of Reionization for studying the Intergalactic Medium 21-cm signal

POLAR: Simulations of the Epoch of **Reionization for studying the Intergalactic** Medium 21-cm signal

POLAR The IGM 21-cm signal

- Forbidden transition from parallel magnetic dipole moments of proton and electron spins to antiparallel.
- Usually collisional de-excitation and not radiative.

Simplified depiction of the 21-cm photon emission.

The IGM 21-cm signal POLAR

- Forbidden transition from parallel magnetic dipole moments of proton and electron spins to antiparallel.
- Usually collisional de-excitation and not radiative.
- But IF, gas clouds have really low densities $(\sim 1$ atom/m³!)...
- And IF we have large amounts of lowdensity neutral H gas clouds, there are enough photons for detection!

POLAR The IGM 21-cm signal

- Forbidden transition from parallel magnetic dipole moments of proton and electron spins to antiparallel.
- Usually collisional de-excitation and not radiative.
- But IF, gas clouds have really low densities $(-1$ atom/m³!)...
- And IF we have large amounts of lowdensity neutral H gas clouds, there are enough photons for detection!

POLAR

Where are we currently?

• ML-GPR[→]: 21-cm signal

power spectrum

template, used in

Gaussian Process Regression.

Anshuman Acharya | anshuman@mpa-garching.mpg.de

POLAR LOFAR's efforts with ML-GPR

POLAR LOFAR's efforts with ML-GPR

- ML-GPR[⊹]: 21-cm signal power spectrum template, used in Gaussian Process Regression.
- Template built by training on the GRIZZLY✧✧ simulations: N-body + Radiative Transfer.
- More robust, better separation from systematics.


```
✧Mertens+24, Acharya+24a,b 
✧✧Ghara+18,20
```
POLAR: Simulations of the Epoch of Reionization for studying the Intergalactic Medium 21-cm signal

POLAR: Simulations of the Epoch of Reionization for studying the Intergalactic Medium 21-cm signal

• GRIZZLY assumed properties of baryons in a simplified manner, thus not taking into account complexities of star formation, supernova feedback,

Need for new simulationsPOLAR

• A bias in the training set could decide the possibility of detection, even

- AGN, etc.
- with more data.

• GRIZZLY assumed properties of baryons in a simplified manner, thus not taking into account complexities of star formation, supernova feedback,

Need for new simulationsPOLAR

• A bias in the training set could decide the possibility of detection, even

• Solution: using a semi-analytic model, to factor in baryonic processes.

- AGN, etc.
- with more data.
-

• GRIZZLY assumed properties of baryons in a simplified manner, thus not taking into account complexities of star formation, supernova feedback,

• A bias in the training set could decide the possibility of detection, even

• **Solution:** using a semi-analytic model, to factor in baryonic processes.

Need for new simulationsPOLAR

- AGN, etc.
- with more data.
-
- This is achieved by using L-Galaxies along with Radiative Transfer.
-

• Faster than full RHD simulations, especially for IGM scales (> 150 Mpc/h).

POLAR: Simulations of the Epoch of Reionization for studying the Intergalactic Medium 21-cm signal

The POLAR simulations **POLAR**

- The model✧:
	- ► N-body (GADGET-4), L = 150 Mpc/h, N = 2048³ particles, m_p = 5 x 10⁷ M_o, with 156 snapshots between $z = 25$ to 5.
	- ‣ Post-processed with L-Galaxies to factor in galaxy evolution.
	- ‣ And with 1D radiative transfer from GRIZZLY.

The POLAR simulations **POLAR**

- The model[⊹]:
	- with 156 snapshots between $z = 25$ to 5.
	- ‣ Post-processed with L-Galaxies to factor in galaxy evolution.
	- ‣ And with 1D radiative transfer from GRIZZLY.

for first tests

► N-body (GADGET-4) $L = 150$ Mpc/h, N = 2048³ particles, $m_p = 5 \times 10^7$ M_o,

The POLAR simulations POLAR

- The model✧:
	- ► N-body (GADGET-4), L = 150 Mpc/h, N = 2048³ particles, m_p = 5 x 10⁷ M_o, with 156 snapshots between $z = 25$ to 5.
	- ‣ Post-processed with L-Galaxies to factor in galaxy evolution.
	- ‣ And with 1D radiative transfer from GRIZZLY.
	- ‣ If we can vary the astrophysics, how much does it need to vary to make different cosmologies viable?

Fiducial cosmology: $Ω_m = 0.3111, Ω_Λ = 0.6889, Ω_b = 0.04897, h = 0.6766, σ₈ = 0.8102$

Fiducial cosmology: $\Omega_{\rm m} = 0.3111, \, \Omega_{\Lambda} = 0.6889, \, \Omega_{\rm b} = 0.04897, \, h = 0.6766, \, \sigma_8 = 0.8102$

h high cosmology (from SH0ES+HST, 2022): $\Omega_{\rm m} = 0.3111, \, \Omega_{\Lambda} = 0.6889, \, \Omega_{\rm b} = 0.04897, \, h = 0.7330, \, \rho_{8} = 0.8102$

higher h , higher matter clustering

POLAR Alternative cosmologies[.]

 $\sigma_{\rm g}$ high case (from eROSITA, 2024): $Ω_m = 0.3111, Ω_Λ = 0.6889, Ω_b = 0.04897, *h* = 0.6766, σ₈ = 0.880$

Anshuman Acharya | anshuman@mpa-garching.mpg.de

Fiducial cosmology: $Ω_m = 0.3111, Ω_Λ = 0.6889, Ω_b = 0.04897, *h* = 0.6766, $σ₈ = 0.8102$$

higher/lower σ_8 , higher/lower matter clustering

*σ*₈ low cosmology (from BOSS+KV450, 2020): $Ω_m = 0.3111, Ω_Λ = 0.6889, Ω_b = 0.04897, *h* = 0.6766, σ₈ = 0.702$

- L-Galaxies: Star formation efficiency, energy released per supernova.
- GRIZZLY: $f_{\rm esc}$ = 12.5%, such that the fiducial model reionizes by z = 5. esc
- GRIZZLY: ionizing photons only from stars (X-ray binaries, AGN, shockheated ISM, not included).

Astrophysical Parameters**POLAR**

Astrophysical Parameters POLAR

Parameter table of L-Galaxies.

tuned to low-z

UVLFs at $z = 9$ and 10. We also reproduce recently observed bright galaxies at $z \ge 14$!

21-cm signal: *δT*^b

-
- Low σ_8 : low E_{SN} and more star formation after enough clumping → faster reionization!
- High σ_8 : high E_{SN} blows away gas leading to slower star $formation \rightarrow slower$ reionization.
- **High h:** faster reionization.

Differential brightness temperature map slices across redshifts.

POLAR 21-cm signal: Power spectrum

POLAR 21-cm signal: Power spectrum

- Expected signal is weak: while better modeling is expected to strengthen the signal, a qualitative agreement between models and deeper upper limits is expected.
- Conclusion: despite differing cosmologies and astrophysics, similar observables are possible.

 $\frac{25}{7}$
20 COMPT 0.15 $10⁺$ $5^{-\}$ Δ_{21cm}^2

PAP Neutral Hydrogen Fraction: possible probe?

 1.0_F

 $0.8 -$

 0.4

 0.2

Anshuman Acharya | anshuman@mpa-garching.mpg.de

- Stronger constraints on the end of EoR from Lyman-*α* forest observations can constrain models!
- Multi-wavelength parameter $\hat{\Xi}^{0.6 \vdash}$ inference is necessary.

Volume averaged neutral H fraction across redshifts.

viable.

• Multi-observation constraints: JWST, Euclid, LIM experiments, and more!

- viable.
-

• Multi-observation constraints: JWST, Euclid, LIM experiments, and more!

- viable.
-
-

• Resolution boosting as multiple high-res simulations is too expensive.

• Multi-observation constraints: JWST, Euclid, LIM experiments, and more!

• Resolution boosting as multiple high-res simulations is too expensive.

- viable.
-
-
- Diffusion modeling to introduce super-resolved dark matter halos.
- Train ML-GPR on POLAR and apply it to LOFAR data.

On the postdoc job market; suggestions welcome!

