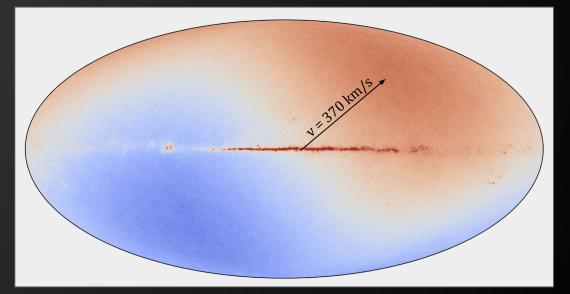


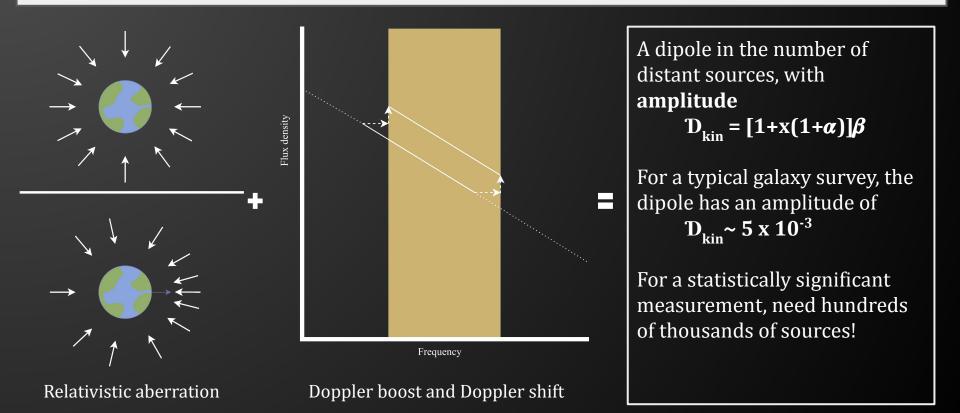
Uncovering the origin of the cosmic radio dipole

Jonah Wagenveld Max Planck Institute for Radio Astronomy

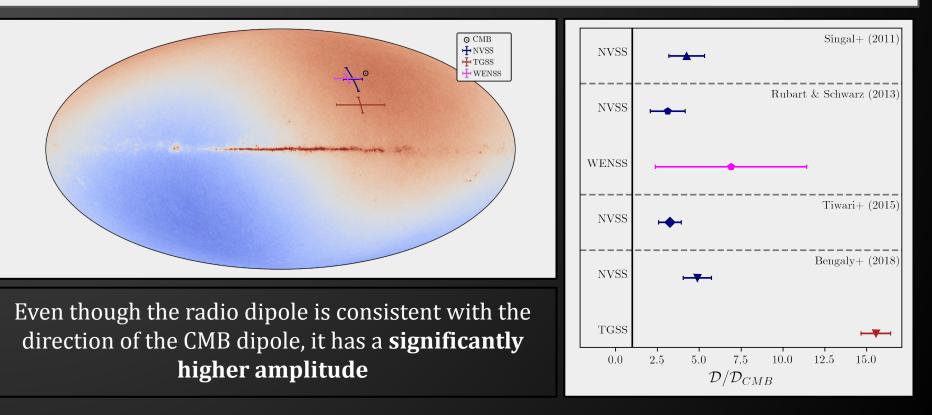
Radio 2024


Erlangen - November 12

The cosmic dipole

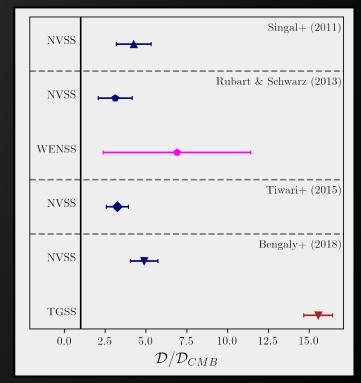

The cosmic dipole is the largest **anisotropy** seen in the CMB.

It is assumed to be caused by our velocity, which through the **Doppler effect** causes a dipole in the observed sky temperature of the CMB.


From the CMB dipole we can derive that the Solar system moves with 369.82 ± 0.11 km/s.

The kinematic dipole in galaxy surveys

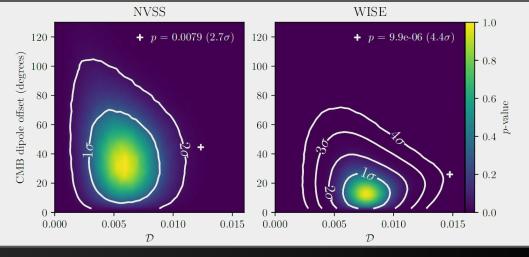
An unexpectedly strong dipole


Interpretations of the anomalous radio dipole

Systematic, such as:

- There are unknown systematic effects in the data that have not been dealt with
- Some assumptions that we are making about how sources should behave is wrong

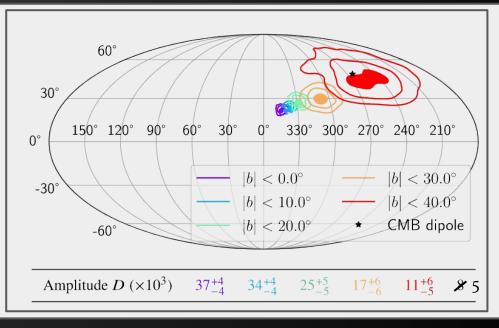
Cosmological, such as:


- There is an anisotropy in the distribution of distant sources
- Distant sources do not share a rest frame with the cosmic microwave background

No longer just a radio dipole

AGN in the infrared CatWISE2020 catalogue also showed an anomalously high **number count dipole amplitude** (Secrest et al. 2021; Secrest et al. 2022)

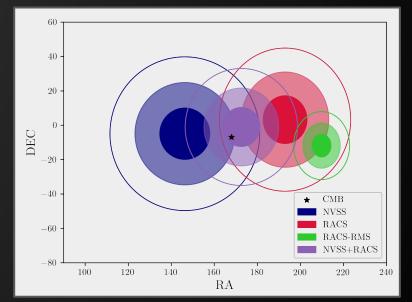
With >10⁶ sources used for the dipole estimate, its significance was nearly 5σ , the **most significant** measurement of the number count dipole thus far!



Secrest et al. (2022)

No longer just a radio dipole

The **Quaia catalogue**, with AGN selected from Gaia, once again showed a **higher dipole amplitude than expected** (Mittal et al. 2024).

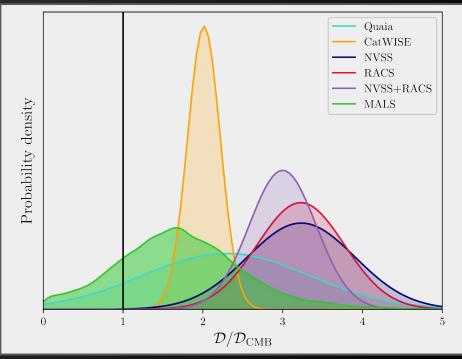

Caveat: cross-matching WISE, and accounting for dust extinction, scanning patterns etc. creates a **complicated selection function**. Small errors can have big impacts!

Mittal et al. (2024)

Joint dipole estimation

- Taking the product of likelihoods of different catalogues yields a joint dipole estimate
- ➤ Massive increase in sensitivity to the dipole
- ➤ Combining NVSS & RACS gives:
 - **800,000** sources
 - A dipole direction perfectly matching with CMB
 - Amplitude three times higher than
 CMB expectation, with 4.8 σ significance

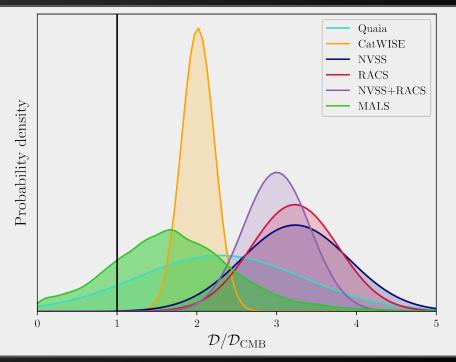
Wagenveld et al. (2023)


The radio dipole with MeerKAT

- The dipole signal was obscured by a strong systematic effect as a function of elevation. Including a model in the dipole estimator to to fit for this relation accounted for this problem
- > Both the **direction** and **amplitude** are close to CMB expectation
- > May be due to the dominant source population at flux limit: **star-forming galaxies**

The state of dipole measurements

- The dipole has now been measured with many galaxy catalogues
 - At different wavelengths and different instruments
 - Radio
 - Infrared
 - Optical
 - With different populations
 - AGN
 - SFGs
- What more information can we get from these different probes?


Wagenveld et al. (2024)

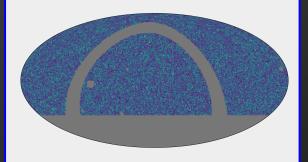
Isolating the kinematic component

Given the **excess** dipole we are measuring, can we be sure that it is fully kinematic?

Idea: Leverage the fact that different catalogues have different **expected kinematic dipoles** to separate it from a potential residual, **non-kinematic** dipole component.

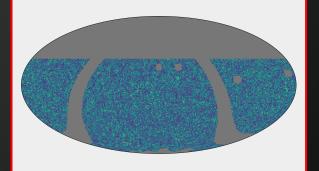
$$\mathcal{D}_i = [2 + x_i(1 + \alpha_i)]\beta + \mathcal{D}_{resid}$$

Wagenveld et al. (2024)

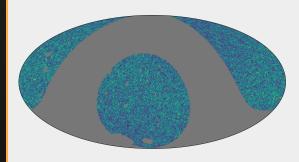

Jonah Wagenveld

Radio 2024 - Erlangen, 12 November

Joint dipole estimation with even more catalogues


NVSS

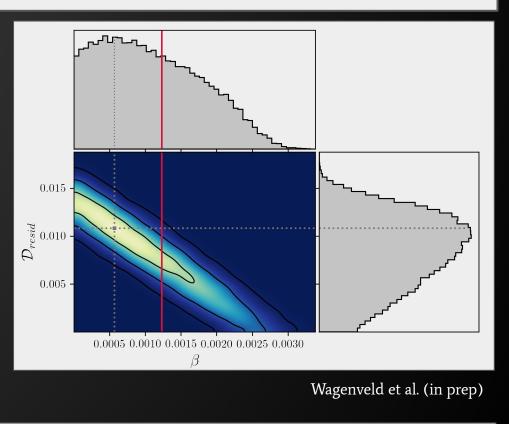
350,000 sources Measured amplitude 3σ from CMB dipole <u>Kinematic expectation</u>: $\mathcal{D}_{kin} = 0.41 \times 10^{-2}$


RACS-low

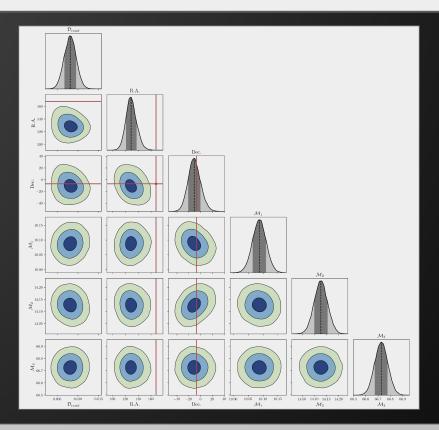
 $\begin{array}{l} \mbox{450,000 sources} \\ \mbox{Measured amplitude } 4\sigma \\ \mbox{from CMB dipole} \\ \hline \mbox{Kinematic expectation:} \\ \mbox{$\mathcal{D}_{kin}=0.41\times10^{-2}$} \end{array}$

CatWISE

1,600,000 sources Measured amplitude 5σ from CMB dipole <u>Kinematic expectation</u>: $\mathcal{D}_{kin} = 0.73 \times 10^{-2}$


Disentangling kinematic and residual components

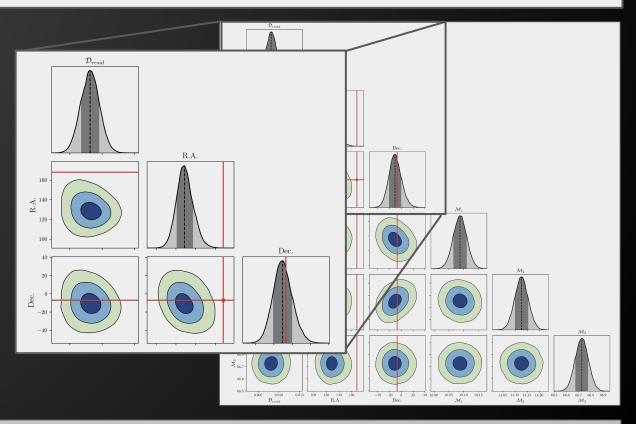
Kinematic and residual components are mostly **degenerate**, but due to CatWISE having a relatively **low measured dipole** amplitude, low velocities are preferred


Best fit kinematic dipole **equal or lower than CMB expectation**

Strong evidence for a **residual**, **non-kinematic**, **dipole component**

 $\mathcal{D}_i = [2 + x_i(1 + \alpha_i)]\beta + \mathcal{D}_{resid}$

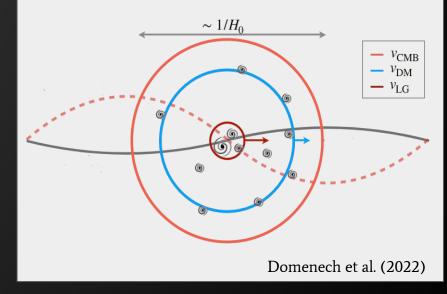
Fixing the kinematic dipole



Fixing the kinematic dipole

Assume kinematic dipole is equal to **CMB expectation**

Residual dipole is 38 degrees offset, **4.4** o, from CMB dipole


Residual dipole is detected with 5.5σ , with amplitude of $\mathbf{D} = (0.81 \pm 0.14) \times 10^{-2}$

Dipole cosmology

Three components that can be moving

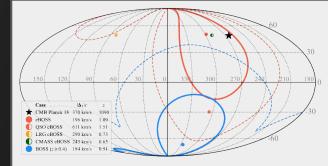
- Local volume
- Matter (represented by number count dipole)
- Cosmic microwave background
- > If $\beta < \beta_{CMB}$:
 - The CMB dipole can still be partially intrinsic
 - The matter kinematic dipole is reduced because it is also moving w.r.t. the CMB
- > If $\beta = \beta_{CMB}$:
 - Matter and CMB rest frame are in agreement
- In either case, a large residual anisotropy is present, which is tough to interpret in a homogeneous and isotropic Universe

What about other probes?

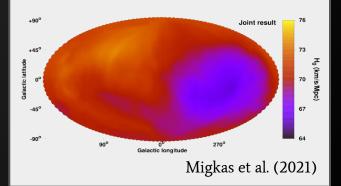
CMB aberration measurements

 Consistency with CMB Doppler boost (Saha et al. 2021; Ferreira & Quartin 2021)

Tomographic redshift dipole


- Only sensitive to kinematic component
- Tentative evidence of consistency with velocity from CMB dipole (Ferreira & Marra 2024; Tiwari et al. 2024)

Solar system motion from SNIa


• Close to velocity from CMB dipole (Horstmann et al. 2022; Sorrenti et al. 2023)

Bulk flows

- Might not converge to CMB rest frame (Watkins et al. 2023)
- Could account for the dipole in cluster scaling relations (Migkas et al. 2021)

Conclusion

- The cosmic radio dipole is no longer just a radio dipole, it has been seen at other wavelengths, making it more relevant than ever
- ➤ With the current suite of dipole measurements, it is difficult to say where the excess dipole amplitude is coming from, although there is evidence that it is **not kinematic**
- Some other cosmological probes see dipoles as well, although it is not clear how (if they even are) they are related to this one
- Future radio observatories (SKA, DSA-2000) will provide invaluable deep radio data to further our understanding of the dipole, especially considering a tentative hint at the dipole being different for SFGs and AGN

Dipole estimators

Linear estimator

Sum source positions to retrieve largest anisotropy

> No model assumptions
 > Incomplete sky coverage
 introduces bias, accounting
 for it is complicated

$$\vec{d} = \frac{3}{N} \sum \vec{r_i}$$

Quadratic estimator

 $\begin{array}{l} Minimise \ \chi^2 \ to \ obtain \ best \\ fit \ dipole \ model \end{array}$

> Assumes dipole model
 > Implicitly assumes
 Gaussian distribution of counts in cells

$$\chi^{2} = \sum_{i} \frac{(n_{i} - n_{i,m})^{2}}{n_{i,m}}$$

Bayesian estimator

Maximise likelihood to obtain best fit dipole

 > Assume Poisson dist. of counts in cells
 > Extensions to likelihood are straightforward

$$\mathcal{L}(n) = \prod_{i} \frac{\lambda^{n_i} e^{-\lambda}}{n_i!}$$