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Extensive Air Showers
• Cascade of particles through hadronic and electromagnetic 

processes 

• Generated by high energy cosmic rays 
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Primary

• Primary (energy, direction, mass)  : obtained via 
reconstruction from surface & fluorescence 
detectors
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Radio Emission of Air Showers
• Geomagnetic emission: time-dependent transverse currents via 

geomagnetic field 

•    

•
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• Charge-excess emission: time-dependent ionisation of air 
molecules 
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• Detection : voltage traces from radio antennas
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Radio Emission of Air Showers
• Geomagnetic emission: time-dependent transverse currents via 

geomagnetic field 
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• Charge-excess emission: time-dependent ionisation of air 
molecules 
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• Detection : voltage traces from radio antennas
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All information of primary cosmic ray (energy, direction, mass) 
encoded in traces 

 complementary approach to traditional detection methods→
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 Reconstruction Xmax
 : atmospheric depth of shower maximum ( ) 

• Proxy for primary mass  crucial piece to understand UHECR origin

Xmax g cm−2

→

Primary

Xmax
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 Reconstruction Xmax
 : atmospheric depth of shower maximum ( ) 

• Proxy for primary mass  crucial piece to understand UHECR origin

Xmax g cm−2

→

Coloured : fluence from   
CoREAS simulation

S. Buitink et al. Phys.Rev.D 90 (2014) 082003

LOFAR Detector Layout

Primary

Xmax

• Only energy deposited (fluence) used  not all information utilised 

 can we extract more information for the primary mass ?

→

⟹

Current: through fit quality of measurements with MC simulations (CoREAS)
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 Shower Profile Reconstruction Xmax
Primary

Goal: reconstruct the full air shower profile 

• Extract more profile parameters  more accurate mass reconstruction 

• Leverage extremely precise measurements from dense + homogeneous 
antenna layout of  Square Kilometre Array  

• All information already available through traces!

→

Xmax
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 Shower Profile Reconstruction Xmax
Primary

Goal: reconstruct the full air shower profile 

• Extract more profile parameters  more accurate mass reconstruction 

• Leverage extremely precise measurements from dense + homogeneous 
antenna layout of  Square Kilometre Array  

• All information already available through traces!

→

Challenges:  

• Spatial & time-dependent processes  4-D problem 

• Trace = field  many d.o.f.  ( )

→

→ > O(103)
Xmax
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 Shower Profile Reconstruction Xmax
Primary

Goal: reconstruct the full air shower profile 

• Extract more profile parameters  more accurate mass reconstruction 

• Leverage extremely precise measurements from dense + homogeneous 
antenna layout of  Square Kilometre Array  

• All information already available through traces!

→

Challenges:  

• Spatial & time-dependent processes  4-D problem 

• Trace = field  many d.o.f.  ( )

→

→ > O(103)

Solution:  Information Field Theory!

Xmax
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Information Field Theory (IFT)
• Bayesian framework applied on field-like structures 

• Easy-to-use Pythonic interface with  

• Requirements: fast & invertible forward model 

• More information on MPA/Ensslin/IFT

6

Latent variables (Hyperprior)

Physical Model (Prior)

Response Model (Likelihood)

Data 

Inference Model
CLEAN

IFT

MPA; NRAO/Klasse Richard A. 

Reconstruction of Cygnus A

M. Straub, ARENA 2024

https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/research_IFT.html
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Shower Profile Model
1. Sample shower parameters ( ,  ) from prior distributionsXmax Nmax

7

Latent Variables

Physical Model

Response Model

Data

Inference Model

Xmax ∼ Uniform(min(Xmax), max(Xmax))

Nmax ∼ LogNormal(μNmax
, σNmax

)

 : atmospheric depth at shower maximum 

 : number of particles at 

Xmax

Nmax Xmax
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Shower Profile Model
1. Sample shower parameters ( ,  ) from prior distributionsXmax Nmax
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Latent Variables

Physical Model

Response Model

Data

Inference Model

Xmax ∼ Uniform(min(Xmax), max(Xmax))

Nmax ∼ LogNormal(μNmax
, σNmax

)

 : atmospheric depth at shower maximum 

 : number of particles at 

Xmax

Nmax Xmax

2. Describe spatial evolution of shower using 
Gaisser-Hillas function:

N(X) = Nmax exp ( Xmax − X
L ⋅ R ) (1 +

R ⋅ (X − Xmax)
L )

R−2

NB: We only consider 1-D spatial evolution for now and fix L, R 
parameters
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Radio Emission Model

8

⃗B

1. Parametrise relations between showers using MC simulations 
for each atmospheric slice  & antennasXslice

Latent Variables

Physical Model

Response Model

Data

Inference Model
Template Synthesis (Desmet+ 2024)

Desmet et al. 2024, Astroparticle Physics, 157, 102923

Xslice

Spectral Parameter  computed from 
MC simulations at ,  and 

a
Xslice Xmax ⃗rant

[50, 200] MHzdcore = 75 m
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Radio Emission Model
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⃗B

1. Parametrise relations between showers using MC simulations 
for each atmospheric slice  & antennasXslice

Latent Variables

Physical Model

Response Model

Data

Inference Model
Template Synthesis (Desmet+ 2024)

Desmet et al. 2024, Astroparticle Physics, 157, 102923

Xslice

Spectral Parameter  computed from 
MC simulations at ,  and 

a
Xslice Xmax ⃗rant

Amplitude spectrum computed from spectral 
parameters at Xslice = 600 g cm−2

[50, 200] MHzdcore = 75 m
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⃗B

2. Calculate amplitude spectrum from simulated traces of an 
origin shower for each slice & antenna 

Latent Variables

Physical Model

Response Model

Data

Inference Model

[30, 80] MHz

Electric field traces of origin shower
Xmax, Nmax

dcore = 75 m

Radio Emission Model
Template Synthesis (Desmet+ 2024)



Keito Watanabe, Radio 2024
9

⃗B

2. Calculate amplitude spectrum from simulated traces of an 
origin shower for each slice & antenna 

Latent Variables

Physical Model

Response Model

Data

Inference Model

[30, 80] MHz

Electric field traces of origin shower
Xmax, Nmax

Amplitude spectrum
dcore = 75 m

Radio Emission Model
Template Synthesis (Desmet+ 2024)
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⃗B

Xmax, Nmax

3. Synthesise emission from target shower using relations with 
origin shower 

Latent Variables

Physical Model

Response Model

Data

Inference Model

Xmax, Nmax

Solid: Origin Shower 
Dashed: Target Shower

[30, 80] MHzdcore = 75 m
Amplitude spectrum

Radio Emission Model
Template Synthesis (Desmet+ 2024)
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⃗B

Xmax, Nmax

3. Synthesise emission from target shower using relations with 
origin shower 

Latent Variables

Physical Model

Response Model

Data

Inference Model

Xmax, Nmax

Solid: Origin Shower 
Dashed: Target Shower

[30, 80] MHzdcore = 75 m
Amplitude spectrum

Radio Emission Model
Template Synthesis (Desmet+ 2024)
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• Synthetic data  in [30, 80] MHz band, 16 antennas following star-shape pattern with  = 1 ns 

•  Noise added through covariance matrix: 

• 3% of maximum amplitude from all antennas (calibration uncertainty) 

• 5% of maximum amplitude from each antenna (antenna-to-antenna uncertainty)

Δt

11

Latent Variables

Physical Model

Response Model

Data

Inference Model

Radio Footprint of Shower Electric Field Traces of Shower

Verification with Synthetic Data
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Verification with Synthetic Data
• Shower parameters reconstruct well as expected 
• Can also reconstruct shower profile / traces from shower 

parameters

12

Latent Variables

Physical Model

Response Model

Data

Inference Model

Truth Reconstructed

794.2 794.6    1.4 -0.38

7.078 7.056    0.016 0.025

Xmax / g cm−2

Nmax / 108

Δ

±

±
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Verification with Synthetic Data
• Testing reconstruction bias with 100 synthetically generated showers 

13

Latent Variables

Physical Model

Response Model

Data

Inference Model

 reconstruction bias of  8 g cm , comparable with classical reconstruction methodsXmax ≲ −2

 but need to include antenna response & realistic noise model for further interpretation (see K. Terveer’s talk)⟹
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Conclusion & Outlook

• Goal: use Information Field Theory for reconstruction of shower profile 

• Utilised fast-forward model for radio emission: template synthesis 

• Preliminary results show accurate reconstruction of   and  Xmax Nmax

14

Xmax, Nmax

Xmax, Nmax

• Generalise for arbitrary antenna positions (Fourier interpolation) 

• Include antenna response & realistic noise model 

• Apply to realistic simulated data & to LOFAR data 

• Reconstruct full shower profile instead of shower parameters

Outlook

A. Corstanje et al. 2023 JINST 18 P09005



Backup Slides



• ~ 60,000 antennas planned within ~ 1 km  

• Planned bandwidth from 50 - 350 MHz 

•  reconstruction with SKA simulations show resolution of 6-8  (LOFAR: 20 ) 

• Also possible to reconstruct L, R parameters, double-bump showers & possibly PeV gamma-rays

2

Xmax g cm−2 g cm−2

Square Kilometre Array
Reconstruction of full air shower profile possible with Square Kilometre Array (SKA)

S. Buitink, ARENA 2024

SKAO

The first 2 complete stations with 512 antennas, 
deployed at Murchison Radio-astronomy Observatory

SKALA : SKA log-periodic 
antenna
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Cosmic Rays • Highly energetic particles (nuclei, -rays, neutrinos) that are 
from astrophysical origin  

• Sources of the highest energy particles are still not yet known! 

• Indirectly measured through air showers at highest energies

γ

17

γ
ν

Nuclei
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Verification with Synthetic Data
• Testing reconstruction bias with 100 synthetically generated showers 
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Latent Variables

Physical Model

Response Model

Data

Inference Model

 reconstruction bias of  8 g cm , comparable with classical reconstruction methodsXmax ≲ −2

 but need to include antenna response & realistic noise model for further interpretation!⟹
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Verification with Synthetic Data
• Reconstruction Efficiency with 100 synthetically generated showers

19

Latent Variables

Physical Model

Response Model

Data

Inference Model

 reconstruction efficiency increases with lower , but still < 4%Xmax Xmax

 but need to include antenna response & realistic noise model for further interpretation!⟹
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Prior Model
• Distribution to sample physical observables for reconstruction 

• Sample each latent parameter  as unit Gaussian  transform to , ξ → Xmax Nmax

20

Latent Variables

Physical Model

Response Model

Data

Inference Model

Xmax ∼ P(ξXmax
| min(Xmax), max(Xmax))

Nmax ∼ P(ξNmax
| μNmax

, σNmax
)

 : atmospheric depth at shower maximum 

 : number of particles at 

Xmax

Nmax Xmax

ξXmax
∼ 𝒩(0,1)

ξNmax
∼ 𝒩(0,1)
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Prior Model
• Distribution to sample physical observables for reconstruction 

• Sample each latent parameter  as unit Gaussian  transform to , ξ → Xmax Nmax
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Latent Variables

Physical Model

Response Model

Data

Inference Model

Xmax ∼ P(ξXmax
| min(Xmax), max(Xmax))

Nmax ∼ P(ξNmax
| μNmax

, σNmax
)

 : atmospheric depth at shower maximum 

 : number of particles at 

Xmax

Nmax Xmax

ξXmax
∼ 𝒩(0,1)

ξNmax
∼ 𝒩(0,1)
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Application to Simulated Data
• Simulated Data using coREAS simulations  
• Accurate  reconstruction with bias of Xmax < 10 g cm−2

21

Latent Variables

Physical Model

Response Model

Data

Inference Model
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Template Synthesis

• Frequency band of 30 - 80 MHz 

• Template synthesis match simulated results 
 5 %! 

• < 1 s per synthesis  viable physical model 
for IFT reconstruction

≲

→
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Electric field trace at single antenna from all slices for simulated target shower 
and synthesised target shower

Latent Variables

Physical Model

Response Model

Data

Inference Model
Verification
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Instrumental Response

23

Currently not implemented!  use electric field traces for now→

Latent Variables

Physical Model

Response Model

Data

Inference ModelIdea: Transform electric field trace  voltage trace through antenna response →

Glaser et al., Eur. Phys.Jour. C (2019) 79: 464

Antenna Response
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Reconstruction of Longitudinal Profile
• Use the whole profile as a prior instead of using Xmax 
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Latent Variables

Physical Model

Response Model

Data

Inference Model


