

Towards Cosmic Ray Air Shower Imaging using Radio Measurements

Keito Watanabe, Tim Huege

Radio 2024, 12.11.2024

Extensive Air Showers

Cascade of particles through hadronic and electromagnetic processes

 μ^+

 e^+

 e^+

- Generated by high energy cosmic rays
- Primary (energy, direction, mass) : obtained via reconstruction from surface & fluorescence detectors

Radio Emission of Ai

- **Geomagnetic emission:** time-dependent transverse geomagnetic field
- Charge-excess emission: time-dependent ionisation molecules

e

• Detection : voltage traces from radio antennas

In Showers \overline{OB}	Primary
currents via π^+	
n of air	
e^+ $e^ \gamma$ π^0	π^+
e ⁺	
$e^{+}e^{+}e^{-}e^{+}e^{-}e^{+}e^{-}e^{-}e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	
e^+	

Radio Emission of Air Showers $O\vec{B}$

- Geomagnetic emission: time-dependent transverse currents via geomagnetic field
- Charge-excess emission: time-dependent ionisation of air molecules
- Detection : voltage traces from radio antennas

All information of primary cosmic ray (energy, direction, mass) encoded in traces

 \rightarrow complementary approach to traditional detection methods

 $X_{\rm max}$: atmospheric depth of shower maximum (g cm⁻²)

• Proxy for primary mass \rightarrow crucial piece to understand UHECR origin

 $X_{\rm max}$: atmospheric depth of shower maximum (g cm⁻²)

• Proxy for primary mass \rightarrow crucial piece to understand UHECR origin

Current: through fit quality of measurements with MC simulations (CoREAS)

S. Buitink et al. Phys.Rev.D 90 (2014) 082003

• Only energy deposited (fluence) used \rightarrow not all information utilised

 \implies can we extract more information for the primary mass?

Keito Watanabe, Radio 2024

Primary

- Extract more profile parameters \rightarrow more accurate mass reconstruction
- Leverage extremely precise measurements from dense + homogeneous antenna layout of **Square Kilometre Array**
- <u>All information already available through traces!</u>

- Extract more profile parameters → more accurate mass reconstruction
- Leverage extremely precise measurements from dense + homogeneous antenna layout of **Square Kilometre Array**
- <u>All information already available through traces!</u>

Primary

- Extract more profile parameters \rightarrow more accurate mass reconstruction
- Leverage extremely precise measurements from dense + homogeneous antenna layout of **Square Kilometre Array**
- <u>All information already available through traces!</u>

Challenges:

- Spatial & time-dependent processes \rightarrow **4-D problem**
- Trace = field \rightarrow many d.o.f. (> $O(10^3)$)

- Extract more profile parameters \rightarrow more accurate mass reconstruction
- Leverage extremely precise measurements from dense + homogeneous antenna layout of **Square Kilometre Array**
- <u>All information already available through traces!</u>

Challenges:

- Spatial & time-dependent processes \rightarrow **4-D problem**
- Trace = field \rightarrow many d.o.f. (> $O(10^3)$)

Solution: Information Field Theory!

Information Field Theory (IFT)

- Bayesian framework applied on field-like structures
- Easy-to-use Pythonic interface with NIFTY
- **Requirements**: fast & invertible forward model
- More information on <u>MPA/Ensslin/IFT</u>

Reconstruction of Cygnus A

MPA; NRAO/Klasse Richard A

Shower Profile Model

1. Sample shower parameters (X_{max} , N_{max}) from prior distributions

 $X_{\max} \sim \text{Uniform}(\min(X_{\max}), \max(X_{\max}))$

 $N_{\rm max} \sim {\rm LogNormal}(\mu_{N_{\rm max}}, \sigma_{N_{\rm max}})$

 X_{\max} : atmospheric depth at shower maximum $N_{\rm max}$: number of particles at $X_{\rm max}$

Shower Profile Model

1. Sample shower parameters (X_{max} , N_{max}) from prior distributions

$$X_{\text{max}} \sim \text{Uniform}(\min(X_{\text{max}}), \max(X_{\text{max}}))$$

$$N_{\rm max} \sim {\rm LogNormal}(\mu_{N_{\rm max}}, \sigma_{N_{\rm max}})$$

 X_{\max} : atmospheric depth at shower maximum $N_{\rm max}$: number of particles at $X_{\rm max}$

2. Describe **spatial evolution of shower** using Gaisser-Hillas function:

$$N(X) = N_{\max} \exp\left(\frac{X_{\max} - X}{L \cdot R}\right) \left(1 + \frac{R \cdot (X - X_{\max})}{L}\right)^{R^{-2}}$$

NB: We only consider 1-D spatial evolution for now and fix L, R parameters

Radio Emission Model Template Synthesis (Desmet+ 2024)

1. Parametrise relations between showers using MC simulations for each **atmospheric slice** X_{slice} & antennas

Spectral Parameter *a* computed from MC simulations at $X_{\rm slice'}$ $X_{\rm max}$ and $\vec{r}_{\rm ant}$

$d_{\rm core} = 75 \,\mathrm{m}$ [50, 200] MHz

for each **atmospheric slice** X_{slice} & antennas

origin shower for each slice & antenna

Radio Emission Model Template Synthesis (Desmet+ 2024)

3. Synthesise emission from target shower using relations with origin shower

Solid: Origin Shower Dashed: Target Shower

 $d_{\rm core} = 75 \,\mathrm{m}$ [30, 80] MHz

- Synthetic data in [30, 80] MHz band, 16 antennas following star-shape pattern with Δt = 1 ns
- **Noise** added through covariance matrix:
 - **3%** of maximum amplitude from **all** antennas (calibration uncertainty)
 - **5%** of maximum amplitude from **each** antenna (antenna-to-antenna uncertainty)

Radio Footprint of Shower

les	
lel	
del	
del	

- Shower parameters reconstruct well as expected
- Can also reconstruct shower profile / traces from shower parameters

	Truth	Reconstructed	Δ
$X_{\rm max}$ / g cm ⁻²	794.2	794.6±1.4	-0.38
N _{max} / 10 ⁸	7.078	7.056± 0.016	0.025

les
del
del
del

Latent Variak

• Testing reconstruction bias with 100 synthetically generated showers

 $X_{\rm max}$ reconstruction bias of \lesssim 8 g cm⁻², comparable with classical reconstruction methods

 \implies but need to include antenna response & realistic noise model for further interpretation (see K. Terveer's talk)

les
del
del
del

Conclusion & Outlook

- Goal: use Information Field Theory for reconstruction of shower profile
- Utilised fast-forward model for radio emission: template synthesis
- Preliminary results show accurate reconstruction of $X_{
 m max}$ and $N_{
 m max}$

Outlook

- Generalise for arbitrary antenna positions (Fourier interpolation)
- Include antenna response & realistic noise model
- Apply to realistic simulated data & to LOFAR data
- Reconstruct full shower profile instead of shower parameters

Backup Slides

Square Kilometre Array

Reconstruction of full air shower profile possible with <u>Square Kilometre Array (SKA)</u>

- ~ 60,000 antennas planned within ~ 1 km²
- Planned bandwidth from **50 350 MHz**
- $X_{\rm max}$ reconstruction with SKA simulations show resolution of 6-8 g cm⁻² (LOFAR: 20 g cm⁻²)
- Also possible to reconstruct L, R parameters, double-bump showers & possibly PeV gamma-rays

The first 2 complete stations with 512 antennas, deployed at Murchison Radio-astronomy Observatory

SKALA : SKA log-periodic antenna

S. Buitink, ARENA 2024

Cosmic Rays

- Highly energetic particles (nuclei, γ -rays, neutrinos) that are from astrophysical origin
- Sources of the highest energy particles are still not yet known!
- Indirectly measured through air showers at highest energies

 $X_{\rm max}$ reconstruction bias of \lesssim 8 g cm⁻², comparable with classical reconstruction methods \implies but need to include antenna response & realistic noise model for further interpretation!

les
del
del
del

• Reconstruction Efficiency with 100 synthetically generated showers

 $X_{\rm max}$ reconstruction efficiency increases with lower $X_{\rm max}$, but still < 4% \implies but need to include antenna response & realistic noise model for further interpretation!

les
del
del
del

Prior Model

- Distribution to sample physical observables for reconstruction
- Sample each latent parameter ξ as unit Gaussian \rightarrow transform to X_{\max} , N_{\max}

$$\xi_{X_{\max}} \sim \mathcal{N}(0,1) \qquad \qquad X_{\max} \sim P(\xi_{X_{\max}} \mid \min(X_{\max}), m)$$

$$\xi_{N_{\max}} \sim \mathcal{N}(0,1) \qquad \qquad N_{\max} \sim P(\xi_{N_{\max}} \mid \mu_{N_{\max}}, m)$$

 $X_{\rm max}$: atmospheric depth at shower maximum $N_{\rm max}$: number of particles at $X_{\rm max}$

 $N_{\rm max}$ / 10⁹ particles

Prior Model

Keito Watanabe, Radio 2024

 $N_{
m max}$ / 10⁹ particles

Application to Simulated Data

- Simulated Data using coREAS simulations
- Accurate $X_{\rm max}$ reconstruction with bias of $< 10 {\rm g} {\rm cm}^{-2}$

Latent Varia

les
del
del
del

Template Synthesis Verification

Electric field trace at single antenna from all slices for simulated target shower and synthesised target shower

Keito Watanabe, Radio 2024

Instrumental Response

Idea: Transform electric field trace \rightarrow voltage trace through antenna response

Currently not implemented! \rightarrow use electric field traces for now

Glaser et al., Eur. Phys.Jour. C (2019) 79: 464

les
lel
del
del

