(photograph by S. Saffi)

Cosmic rays and air shower physics III

Ralph Engel Karlsruhe Institute of Technology (KIT)

Many known accelerators in our Galaxy

Supernove remnants: Tychos SN 1573

Magnetic confinement in Galaxy

Standard model of galactic cosmic rays

Argument of energy balance: SNR Fermi shock acceleration on shocks ~ $E^{-2.4}$

Magnetic diffusion in disk and halo

Production of secondary particles

Unexpected structure – check with secondaries

Data indicate propagation effect causing hardening

Escape time: diffusion coefficient

Source

 $N_{\rm B}(E)~\sim~ au_{
m B,esc}$

 \sim

 $\tau_{\mathrm{B,esc}}$ (

(AMS, PRL 120 (2018) 021101)

$$\frac{E}{\tau_{C,int}} \frac{N_{C}(E)}{\tau_{C,int}}$$

$$\frac{E}{\tau_{C,esc}(E)} \tau_{C,esc}(E) Q_{C}(E)$$

Unexpected structure – check with secondaries

 $N_{\rm B}(E$

 $\tau_{B,esc}$

 $\tau_{\mathrm{B,esc}}($

 \sim

 \sim

(Balsi, Amato, Serpico, PRL 109 (2012) 061101)

Transition from self-generated turbulence of mag. fields to externally generated turbulence (AMS, PRL 120 (2018) 021101)

Change predicted
from
$$\delta \sim 0.6$$
 at low energy
to $\delta \sim 0.33$ at high energy

$$E) \frac{N_{\rm C}(E)}{\tau_{\rm C,int}}$$

$$\frac{(E) \tau_{\rm C,esc}(E)}{\tau_{\rm C,int}} Q_{\rm C}(E)$$

Cosmic ray flux and interaction energies

Air shower ground arrays: N_e and N_μ

KASCADE und KASCADE-Grande (KArlsruhe Shower Core and Array DEtector)

Fläche ~ 0.04 km², 252 Teilchendetektoren

Air shower ground arrays – model dependence

Energy estimate: energy conservation

$\ln E = a \cdot \ln N_e + b \cdot \ln N_\mu$

Possible interpretation of knee in spectrum

Mass composition at the knee: KASCADE data

11

LHC data and interpretation of knee

Knee due to diffusion / escape from Glaxy

Diffusion: same behaviour for different elements at same rigidity $p/Z \sim E/Z$

Knee due to features of acceleration processes

 $E_{p,\text{max}} = 3 \times 10^{12} Z \left(\frac{B}{\mu \text{G}}\right) \left(\frac{u}{1000 \,\text{km/s}}\right) \left(\frac{L}{\text{pc}}\right) \text{eV}$

14

Emerging model of high-energy cosmic rays

- Knee as feature of either maximum particle energy of a source class or propagation
- Dominance of helium flux observed (and expected from low-energy extrapolation), but not understood
- Acceleration scenario: sources don't reach energy of transition to free steaming
- Diffusion scenario: mass groups should show $\sim 20\%$ anisotropy beyond the knee

Physics of extragalactic cosmic rays

Sources have to produce particles reaching 10²⁰ eV

Need accelerator of size of the orbit of the planet Mercury to reach 10²⁰ eV with LHC technology

Hardly any source expected to accelerate protons to 10²⁰ eV

Examples of astrophysical source candidates

Diffusive shock acceleration

Inductive acceleration

Single (relativistic) reflection

Rapidly spinning neutron stars

$$\frac{\mathrm{d}N_{\mathrm{inj}}}{\mathrm{d}E} \sim E^{-1} \left(1 + \frac{E}{E_g}\right)^{-1}$$

National Radio Astronomy Observatory / AUI, Murgia et al.; STScl (for the inset)

Tidal disruption events (TDEs)

Acceleration (bottom-up) or exotic (top-down) scenarios?

X particles from:

- topological defects
- monopoles
- cosmic strings
- cosmic necklaces

....

Fact sheet: sources **Active Galactic Nuclei (AGN):** Black Hole of ~10⁹ solar masses

	Process
AGNs, GRBs,	Diffuse show
(☆)	acceleration
Young pulsars (☆☆)	EM accelera
X particles	Decay & par
(☆☆☆)	cascade

Z-bursts (ऊर्फ्रेक्रेक्रे) Z⁰ decay & particle case

Big Bang: super-heavy particles, topological defects: $M_X \sim 10^{23} - 10^{24} \text{ eV}$

SS	Distribution	Injection flux
e shock eration	Cosmological	р Fe
celeration	Galaxy & halo	mainly Fe
v & particle de	(a) Halo (SHDM) (b) Cosmological	ν,γ-rays and p
cay & le cascade	Cosmological & clusters	ν , γ -rays and p

Magnetars: magnetic field up to ~10¹⁵ G

large fluxes of photons and neutrinos

(RE, Nijmegen Summer School, 2006) 19

Propagation of ultra-high energy particles

Energy loss due to propagation in CMB

Typical production distances – GZK sphere

(Bergmann et al., PLB 2006)

Greisen-Zatsepin-Kuzmin (GZK) effect, 1966

Need additional "component B"

Hillas' model of cosmic ray flux

Mainly protons as UHECR

$$\frac{dN_{\rm inj}}{dE} \sim E^{-2.3}$$

Deformation of injected spectrum fully understood

(Hillas J. Phys. G31, 2005)

Standard models of ultra-high energy cosmic rays (2005)

Ankle model: Hillas, Wolfendale et al.

$$\frac{\mathrm{d}N_p}{\mathrm{d}E} \sim E^{-2.3}$$

(J. Phys. G31 (2005) R95)

Dip model: Berezinsky et al.

 $p \gamma_{\rm CMB} \rightarrow p \ e^+ e^-$

$$\frac{\mathrm{d}N_p}{\mathrm{d}E} \sim E^{-2.7}$$

(PRD 74 (2006) 043005)

Matter/source distribution in the Universe

Cosmic rays, gamma-rays

Defection by magnetic fields

Deflection

mag. field

Deflection in extragalactic mag. fields (~1nG)

protons (Cronin, NPB 2003) (Unger & Farrar, ApJ 970 (2<mark>024</mark>) 3x10¹⁸ eV 10¹⁸ eV FARADAY ROTATION 1019 eV -50 X (Mp

External galaxies: one example

Ultra-high energy cosmic ray observations

Telescope Array (TA)

Middle Drum: based on HiRes II

3 fluorescence detectors (2 new, one station HiRes II)

Northern hemisphere: Delta, Utah, USA

Extension to TAx4 in progress

Measurement principles (hybrid observation)

Measurement principles (hybrid observation)

Examples of observed events

Energy spectrum 2013 and GZK expectation

Greisen-Zatsepin-Kuzmin (GZK) effect

Photo-pion production (mainly Δ resonance) and e⁺e⁻ pair production

Photo-dissociation (giant dipole resonance)

Energy spectrum of Auger Observatory

Phys. Rev. Lett. 125 (2020) 121106 Phys. Rev. D102 (2020) 062005 Eur. Phys. J. C81 (2021) 966

Band: uncertainty, mainly 14% sys. energy scale

Spectrum shape and Instep not compatible with source models of single mass group (p, ..., Fe)

Depth of shower maximum

Multi-messenger searches: photons

Photons interact deeper (larger X_{max}), fewer muons (rise time, lateral slope)

Multi-messenger searches: neutrinos

Magnetars from BNS (Fang 2017) -

Arrival direction distribution surprisingly isotropic

Pierre Auger and TA Collaborations, ApJ 794 (2014) 2, 172

6.5% dipole at 6.9 σ (post rial)

(Science 357 (2017) 1266, update ICRC 2023)

Arrival directions – large angular scales

E >	> 8 × 10	¹⁸ eV			
E (EeV)	N	d_{\perp}	d_z	d	$\alpha_d[^\circ]$
4-8	106, 290	$0.01^{+0.006}_{-0.004}$	-0.012 ± 0.00	$0.016^{+0.008}_{-0.005}$	97 ± 2
8-16	32, 794	$0.055^{+0.011}_{-0.009}$	-0.03 ± 0.01	$0.063^{+0.013}_{-0.009}$	95 ± 1
16-32	9, 156	$0.072^{+0.021}_{-0.016}$	-0.07 ± 0.03	$0.10^{+0.03}_{-0.02}$	81 ± 1
≥ 8	44, 398	$0.059^{+0.009}_{-0.008}$	-0.042 ± 0.01	3 $0.073^{+0.011}_{-0.009}$	95 ± 8
≥32	2, 448	$0.11^{+0.04}_{-0.03}$	-0.12 ± 0.05	$0.16^{+0.05}_{-0.04}$	139 ± 1
Dipole amplitude growing with energy					
$d(E) = d_{10} \times (E/10 \text{ EeV})^{\beta}$ $d_{10} = 0.050 \pm 0.007$ $\beta = 0.98 \pm 0.15$ Dipole points away from Galactic Center extragalactic origin					

5

10 Energy [EeV]

50

Centaurus A: $E > 3.8 \ 10^{19} \text{ eV}$, ~27° radius, 4.0 σ (post trial) **Starburst galaxies:** E > 3.8 10¹⁹ eV, ~25° radius, 3.8 σ (post trial)

Discovery level of 5σ expected only after 2025 **First probe of TA over-densities thanks to inclined showers**

(Astrophysical Journal, 935:170, 2022, update ICRC 2023)

Interpretation of data

Model calculations for mass composition and flux

Assumption: source injection spectra universal in rigidity R = E/Z(acceleration, scaling with charge *Z*)

Transition to heavier nuclei

$$E_{\rm p,cut} = 1.4 \dots 1.6 \times 10^{18} \, {\rm eV}$$

Exceptionally hard injection spectrum

$$\frac{\mathrm{d}N}{\mathrm{d}E} \sim E^{1.5...2}$$

Fermi acceleration

$$E^{-2...-2.3}$$

Flux suppression due mainly to limit of injection energy of sources

Extragalactic origin of dipole anisotropy

Direction and energy dependence of extragalactic dipole

(Auger, ApJ 203, 2012, Giacinti et al. JCAP 2012, 2015)

> Protons below ankle energy are of extragalactic origin **Dipole anisotropy indicates transition to extragalactic sources** Interplay of source distribution, composition, and mag. horizon

(Bister & Farrar, 2312.02645)

(Auger, ApJ 868 (2018) 1)

Closest Active Galactic Nucleus: Centaurus A

Moon for comparison of apparent size

Distance ~3.8 Mpc

50 kpc

Fermi I (diffusive shock acceleration)

X-RAY

(Matthews, Bell, Blundel New Ast. Rev. 89 (2020) 101543)

New generation of complex model scenarios

Interplay between confinement in source and disintegration of nuclei: hard energy spectra (Aloisio et al. 2014, Taylor et al. 2015, Globus et al. 2015, Unger et al. 2015,

Fang & Murase 2017)

Reverse shock scenario in **Iow-Iuminosity Iong GRBs** (Zhang, Murase et al 2019+)

Tidal disruption events (TDEs) of WD or carbon-rich stars

(Farrar, Piran 2009, Pfeffer et al. 2017, Zhang et al 2017)

One-shot acceleration in rapidly spinning neutron stars (Arons 2003, Olinto, Kotera, Feng, Kirk ...)

Cen-A bust & deflection on **Council of Giants**, solving isotropy and source diversity problem (Taylor et al. 2023)

Relativistic reflection of existing CR population (Biermann, Caprioli, Wykes, 2012+, Blandford 2023)

tories, **AugerPrime** and **TAx4** rove significantly this kind of s in the next years

(Fujii, rapporteur talk ICRC 2023)

Backtracking of particles through Galactic mag. field

New mag. field model UF24

(Unger & Farrar, 2311.12120)

Figure 6. Flux map (top row) and I i-Ma significance map (bottom row) at energies $E_{\text{Auger}}^{\text{TA}} \ge \frac{48.2 \text{ EeV}}{38 \text{ EeV}}$ with n Equatorial (left) and Galactic (right) coordinates. The supergalactic left plot, the orange line represents the Galactic plane and the star the

The only significant feature found is a **dipole** pointing away from the GC at lower energies

Amaterasu event (~2.4x10²⁰ eV)

(TA, Science 382 (2023) 903) (Unger & Farrar, ApJ 962 (2024) L5)

Auger high energy event (~1.6x10²⁰ eV)

Upgrade of the Observatory – AugerPrime

Physics motivation

- Composition measurement up to 10²⁰ eV
- Composition selected anisotropy
- Particle physics with air showers
- Much better understanding of new and old data

Components of AugerPrime

- 3.8 m² scintillator panels (SSD)
- New electronics (40 MHz -> 120 MHz)
- Small PMT (dynamic range WCD)
- Radio antennas for inclined showers
- Underground muon counters (750 m array, 433 m array)

Auger Observatory Phase II: 10 more years of data taking

Backup slides

Qualitative approach: Heitler-Matthews model

Assumptions:

- cascade stops at $E_{\text{part}} = E_{\text{dec}}$
- each hadron produces one muon

(Matthews, Astropart. Phys. 22, 2005)

Primary particle proton

 π^{0} decay immediately

 π^{\pm} initiate new hadronic cascades

$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha}$$
$$\alpha = \frac{\ln n_{\text{ch}}}{\ln n_{\text{tot}}} \approx 0.85 \dots 0.95$$

Superposition model – particle numbers

Nucleus (binding energy ~5 MeV/nuc)

Proton-induced shower

Assumption:

nucleus of mass A and energy E₀ corresponds to A nucleons (protons) of energy $E_n = E_0/A$

Iron showers ~40% more muons than proton showers

$$N_{\rm max} \sim E_0/E_c$$

$$N_{\mu} = \left(\frac{E_0}{E_{\rm dec}}\right)^{\alpha}$$

 $\alpha \approx 0.9$

$$N_{\rm max}^A \sim A\left(\frac{E_0}{AE_c}\right) = N_{\rm max}$$
$$N_{\mu}^A = A\left(\frac{E_0}{AE_{\rm dec}}\right)^{\alpha} = A^{1-\alpha}N_{\mu}$$

Superposition model – depth of shower maximum

Nucleus (binding energy ~5 MeV/nuc)

Proton-induced shower

Assumption: nucleus of mass A and energy E₀ corresponds to A nucleons (protons) of energy $E_n = E_0/A$

Proton showers penetrate deeper than iron showers ~ In(A)

 $X_{\rm max} \sim \lambda_{\rm eff} \ln(E_0)$

 $X_{\rm max}^A \sim \lambda_{\rm eff} \ln(E_0/A)$

Hadronic interactions – cross section measurement

(Auger, PRL 109 (2012) 062002)

 σ_{p-a}

$$\frac{\Delta}{\lambda_{1}} = \frac{1}{\lambda_{\text{int}}} e^{-X_1/\lambda_{\text{int}}}$$

$$air = rac{\langle m_{air} \rangle}{\lambda_{int}}$$

- fluctuations in shower development (model needed for correction)
- conversion from p-air to p-p

Hadronic

1100

X_{max} [g/cm²]

1000

1200

(Auger, PRL 109 (2012) 062002)

- fluctuations in shower development (model needed for correction)

ion measurement

Auger muon measurement – vertical showers

Auger muon measurement – inclined showers

(Auger PRD 2015, PRL 2021)

Shower-to-shower fluctuations

Lorenzo Cazon et al. Astropart. Phys. 36 (2012) 211 Phys. Lett. B784 (2018) 68 Phys. Rev. D103 (2021) 022001

70% of fluctuations from first interaction

Discrepancy of muon number (20–30%), but no in relative shower-to-shower fluctuations

Muon production at large lateral distance

Muon observed at 1000 m from core

(Maris et al. ICRC 2009)

Importance of hadronic interactions at different energies

(Ulrich APS 2010)

Shower particles produced in 100 interactions of highest energy

Electrons/photons: high-energy interactions

Muons/hadrons: low-energy interactions

Muons: 8 – 12 generations, majority of muons produced in ~30 GeV interactions

Muon production depends on hadronic energy fraction

Several of these effects: Core-Corona model (Pierog et al.)

1 Baryon-Antibaryon pair production (Pierog, Werner 2008)

- Baryon number conservation
- Low-energy particles: large angle to shower axis
- Transverse momentum of baryons higher
- Enhancement of mainly **low-energy** muons

(Grieder ICRC 1973; Pierog, Werner PRL 101, 2008)

2 Enhanced kaon/strangeness production (Anchordoqui et al. 2022)

- Similar effects as baryon pairs
- Decay at higher energy than pions (~600 GeV)

3 Leading particle effect for pions (Drescher 2007, Ostapchenko 2016)

- Leading particle for a π could be ρ^0 and not π^0
- Decay of ρ^0 to 100% into two charged pions

4 New hadronic physics at high energy (Farrar, Allen 2012, Salamida 2009)

- Inhibition of π^0 decay (Lorentz invariance violation etc.)
- Chiral symmetry restauration

IceCube: discrimination of enhancement scenarios?

(IceCube, Gonzalez & Dembinski et al. 2016)

IceCube: $E_{\mu} > 300 \text{ GeV}$

Malargue, Province Mendoza, Argentina

Malargue, Province Mendoza, Argentina

Fluorescence telescopes

14

PMT camera with 440 pixels,I.5° FoV per pixel, I0 MHz,3.4 m segmented mirror

Particle detectors

10 m² area, 1.20 m high, 12 tons of water, 3 PMTs (9 inch), 40 MHz

Use cosmic ray flux to estimate neutrino flux: The Waxman-Bahcall upper bound (1998)

(Waxman & Bahcall, Phys. Rev. D59 (1999) 023002) (Bahcall & Waxman, Phys. Rev. D64 (2001) 023002)

Waxman

Bahcall

Physics scenario of Waxman-Bahcall bound: one interaction

Neutrons escape from the source

Fermi acceleration: $dN/dE \sim E^{-2}$

In source:

- protons/nuclei
- electrons/positrons

Target: radiation fields and matter

Assumptions and resulting bound

Sources inject only protons, luminosity normalized to CR data in range 10¹⁹ – 10²⁰ eV

$$Q_p(E_p) = A E_p^{-2}$$

For each proton escaping the source exactly one interaction is assumed

Neutrino flux

$$\Phi_{\nu_{\mu}}(E_{\nu_{\mu}}) = 0.33 \times 0.2 \times 0.25 \times AE_{\nu_{\mu}}^{-2}$$

Correction factors related to

- cosmological evolution of sources
- neutrino oscillations

(Fermi acceleration of protons)

$$\rightarrow n e^+ v_e \bar{v}_\mu v_\mu$$

each particle has 25% of the energy of the π^+

(single interaction)

 $\Phi_{\nu_{\mu}}(E_{\nu_{\mu}}) < 2 \times 10^{-8} \,\mathrm{GeV/cm^2 \, s \, sr}$

(Waxman & Bahcall, PRD59, 1998)

Assumptions and normalization of WB upper bound

- Extragalactic cosmic-ray protons extending to the highest energies
- One interaction with photon field per proton in source or source region
- Source production spectrum similar to Fermi acceleration

- Energy production rate (normalization) of 4 x 10⁴⁴ erg Mpc⁻¹ yr⁻¹

Size of neutrino detector (water, ice) for observing this flux has to be V ~ 1 km³

(Waxman & Bahcall, Phys. Rev. D59 (1999) 023002)

$$\sim E^{-\gamma} \qquad \gamma = 1.8...2.3$$

(Waxman, ApJ 452 (1995) L1)

Summary of assumption of WB upper bound

- Extragalactic cosmic-ray protons extending to the highest energies
- One interaction with photon field per proton in source or source region
- Source production spectrum similar to Fermi acceleration

- Energy production rate (normalization) of 4 x 10⁴⁴ erg Mpc⁻¹ yr⁻¹

Size of neutrino detector (water, ice) for observing this flux has to be V ~ 1 km³

(Waxman & Bahcall, Phys. Rev. D59 (1999) 023002)

$$\sim E^{-\gamma} \qquad \gamma = 1.8...2.3$$

(Waxman, ApJ 452 (1995) L1)

Constraints on source models – luminosity density

(MIAPP review, Front.Astron.Space Sci. 6 (2019) 23)

Integral of cosmic ray flux observed by Auger

$$\varepsilon_{CR} = 4\pi/c \int_{E_{ankle}}^{\infty} E \cdot \text{Flux}(E) \, \mathrm{d}E$$

 $= (5.66 \pm 0.03 \pm 1.40) \cdot 10^{53} \text{ erg Mpc}^{-3}$

$$\mathscr{L} \sim \varepsilon_{CR}/t_{\text{loss}} = 2 \cdot 10^{44} \,\text{erg}\,\text{Mpc}^{-3}\,\text{yr}^{-1}$$

Full calculation with SimpProp: $\mathscr{L} \simeq 6 \cdot 10^{44} \,\mathrm{erg} \,\mathrm{Mpc}^{-3} \mathrm{yr}^{-1}$

Like WB bound: gamma rays produced in sources (direct e[±] acceleration and CR interactions)

75

Increase of statistics at highest energies

(Unger, RE et al., work in progress)

Interpretation of hotspot with different catalogs Second hotspot will break degeneracy

GRAND (Giant Radio Array for Neutrino Detection)

Background: cosmic rays (8 x aperture of Auger)

GRANDProto300

202x

202x+5

- 300 antennas over 200 km²
- autonomous radio detection of very inclined air-showers
- cosmic rays 10^{16.5-18} eV
- 1.3 M€ (fully funded, China)

- 10⁴ anten
- 1st GRAN
- discovery optimistic
- 13 M€ (m

(slides by K. Kotera)

-	
GRAND10k	GRAND200k
	203x
nas over 10 ⁴ km ² ID subarray of EeV neutrinos for fluxes ostly China)	 200k antennas over 200k km² 20 sub-arrays of 10k antennas on different continents 1st EeV neutrino detection and/or neutrino astronomy! 150 M€

NADIR FOR UHECR: Radius 200-400 km

DBSERVING MODES

LIMB FOR NEUTRINOS & UHECRS RADIUS 2.6-3.7 103 KM

Extension of Telescope Array – TAx4

TELESCOPE ARRAY

TA x 4 Expanded Surface Array

- 2.08-km spacing
- SDs similar design as TA
- 257 of planned 500 deployed (operational since 11/2019)

Fluorescence Telescopes

- 4 telescopes viewing NE lobe (since 06/2019)
- 8 telescopes viewing SE lobe (since 08/2020)
- 3°-17° elevation

Slide by John Matthews

- Ultra-large aperture (~100,000 km sr)
- Composition sensitivity essential
- Good energy resolution (~20%)
- Multi-messenger instrument
- Full-sky observation (several observatory sites, different technologies)
- Include atmosphere and geo-sciences etc.

Towards a Global Cosmic Ray Observatory (GCOS)

Techniques currently explored by TA and Auger collaborations

GCOS

GCOS

GCO

undamenta

sics studies

World data set on depth of shower maximum (X_{max})

(Coleman et al. Snowmass, Astroparticle Physics 147 (2023) 102794)

Surface detector data and machine learning

Simulated signal of one surface station

Reconstructing Xmax with DNNs: ultimate check with hybrid data

(Auger, JINST 16 (2021) P07019)

Shower-by shower Xmax resolution

An invitation: Auger open data

opendata.auger.org

Correlation with star burst galaxies

Gamma ray bursts or rapidly spinning neutron stars as sources?

Data taking needed until 2035 to solve this question

Graphical representation of WB bound

Estimate of size of required neutrino detector based on this type of calculation (V ~ 1 km³)

No data to support assumptions at the time the bounds was developed

GZK mechanism

p π^0

$$egin{aligned} \pi^0 & \longrightarrow \gamma \, \gamma \ \pi^+ & \longrightarrow \mu^+ \,
u_\mu & \longrightarrow e^+ \,
u_e \,
u_\mu \, ar
u_\mu \,
u_\mu \end{aligned}$$

Secondary particles – Propagation and sources

- Gamma rays
- **Neutrinos**

