Atmospheric Neutrino Oscillations in IceCube DeepCore

Juan Pablo Yáñez

AT School 2024 Obertrubach-Bärnfels

j.p.yanez@ualberta.ca

- Ice Cherenkov v detector
- 1.5 2.5 km under ice
- 5,160 DOMs on 86 strings
- 1 km³ volume
- High energy array spacing
 - Δ*z*=17m
 - $\Delta(x, y) = 125m$
- LE extension: DeepCore
 - Δ*z*=7m
 - $\Delta(x, y)$ =40-70m

- Ice Cherenkov v detector
- 1.5 2.5 km under ice
- 5,160 **DOMs** on 86 strings
- 1 km³ volume
- High energy array spacing
 - Δ*z*=17m
 - $\Delta(x, y) = 125m$
- LE extension: DeepCore
 - Δ*z*=7m
 - $\Delta(x, y)$ =40-70m

- Ice Cherenkov v detector
- 1.5 2.5 km under ice
- 5,160 DOMs on 86 strings
- 1 km³ volume
- High energy array spacing
 - Δ*z*=17m
 - $\Delta(x, y) = 125m$
- LE extension: DeepCore
 - Δ*z*=7m
 - $\Delta(x, y)$ =40-70m

- Ice Cherenkov v detector
- 1.5 2.5 km under ice
- 5,160 DOMs on 86 strings
- 1 km³ volume
- High energy array spacing
 - Δ*z*=17m
 - $\Delta(x, y) = 125m$
- LE extension: DeepCore
 - Δ*z*=7m
 - $\Delta(x, y)$ =40-70m

	MANUTATION OF THE OWNER
350n	00000000000000
	00000

The DeepCore data

- Use all/most events starting in the DeepCore region
 - Strong atm. μ background suppression still, some will remain
 - Mostly contained energy estimator is reasonable
 - Information from interaction available: topology \rightarrow flavor

Color indicates time (red=early, blue=late). Sphere size is proportional to number of photons observed.

Measurements of neutrino oscillations (DeepCore)

Analysis strategy for oscillations

Analysis strategy for oscillations

What are we doing today?

Explore the data release for IceCube's 2018 result - PRL 120, 071801 (2018)

- Load the data, look at the "observables" that IceCube uses
- Understand what signature is expected from oscillations
- Learn how you compute an "oscillated flux of neutrinos"
- Test the impact of oscillations on atmospheric neutrinos
- Extract the oscillation parameters using the simplified 2-flavor formula

$$P_{\nu_{\mu} \to \nu_{\tau}} \simeq \sin^2 2\theta_{23} \, \sin^2 \left(\frac{\Delta m_{32}^2}{4E} L \right) = A \, \sin^2 \left(1.267 \, \frac{\Delta m_{32}^2}{eV^2} \, \frac{L/km}{E/GeV} \right)$$

Links and tools

- Coding in Google Colaboratory
 - Link to the folder with code and data
 - Open the code and copy to your own google drive
 - Download dragon_data.pkl and upload to your own google drive
- Follow the code, think about the questions, propose answers
- Fill in the gaps (write the missing code)
- Run the fit