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neutrinos as probes



neutrino sources



searching for exotic physics with ν

non-standard 

interactions

Lorentz invariance 

violation



studying astrophysical objects

supernova 

neutrinos
HE neutrinos from 

violent sources

solar neutrinos
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outline

-historical context

-modeling atmospheric neutrinos

-detection technology

-motivation & recent results

-future experiments



7

atmospheric neutrino 

origins

A lot of the material borrowed from
• P. Lipari’s talk at neutrino history conference
• Horeandel, Early cosmic-ray work published in German
• Bertolotti, Celestial Messengers

http://neutrinohistory2018.in2p3.fr/programme.html
https://arxiv.org/pdf/1212.0706.pdf
https://www.springer.com/gp/book/9783642283703
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it starts with radioactivity

-phenomenon of 

radioactivity discovered in 

late 1800’s

-electroscopes were used to 

study levels of radioactivity

-they would spontaneously 

discharge, why?
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a source outside Earth?

-could radioactivity have 

non-terrestrial origin?

-in 1910 Theodor Wulf 

went up the Eiffel Tower 

(300m) and measured less 

radiation than on the 

ground, but more than 

expected
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adventurous experiments

-Viktor Hess 

made multiple 

balloon flights 

in 1912

-Going up to 

5km elevation
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adventurous experiments

Hess, V.F., 1912, Phys.. Z, 13 1084.
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coming from the cosmos

-there’s a dip, then a 

sharp rise in radiation 

levels

-Kolhörster confirmed 

the measurements 

shortly afterwards

-non-terrestrial 

radiation exists: 

cosmic rays
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identifying the radiation

-but what is it? first 

believed to be gamma rays

-but in 1928-1929 Bothe & 

Kolhoerster showed the 

radiation to be very 

penetrating

-first peek at muons (at 

that time not known)

-what about the primary 

radiation?

detector

detector

4.1cm gold block

76% of particles passing through
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Earth has a magnetic field
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identifying primary CRs

-intensity of cosmic rays is smaller at the equator

-B-field deflecting them → they are charged!
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positively charged CRs

-in 1930 Rossi proposed a 

charge-induced asymmetry in 

arrival directions

-Earth shadows trajectories → 

more particles from west 

compared to east

-most CRs are positively 

charged → protons & nuclei
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consequences of CR interactions

-muons and pions are produced

-unstable → decay → neutrinos

so, there must be an 

“atmospheric neutrino” flux
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modeling the 

atmospheric 

neutrino flux
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calculation needs

-cosmic ray flux

-atmospheric density

-hadronic interactions

-model of weak decays
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cosmic ray flux

PDG 2017

-many new 

measurements in last 

years

-extreme precision from 

AMS-II, CALET and 

DAMPE
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hadronic interactions

proton proton

hadrons

-messy interactions

-no full first-principle 

calculations

-use MC generators 

that mix 

phenomenology and 

calculations
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atmospheric density

-model or direct measurement

-using satellite data

AIRS

NRLMSIS-E-00 
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computation scheme options

a) analytically approx. cascade equations

b) numerically solving the equations

See A. Fedynitch’s talk at ISAPP 2018 
for a more complete discussion

https://indico.cern.ch/event/719824/contributions/2972427/attachments/1744564/2823951/Inclusive_leptons_expand.pdf
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computation scheme options

a) analytically approx. cascade equations

b) numerically solving the equations

c) MC of CR injected far from Earth
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predicted flux

-covers a wide 

energy range

-contains four 

different particles

-dominated by muon 

neutrinos

-approximately 

top/down symmetric
M. Honda et al., Phys. Rev. D70, 043008 (2004) 
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predicted flux

M. Honda et al., Phys. Rev. D70, 043008 (2004) 

-covers a wide 

energy range

-contains four 

different particles

-dominated by muon 

neutrinos

-approximately 

top/down symmetric
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neutrino fluxes



28

atmospheric 

neutrino detection
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first ideas

-Greisen (1960) 

proposed a volume of 

water surrounded by 

Cherenkov counters

-Markov (1960) 

proposed installing 

detectors deep in a 

lake or the sea
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first ideas

key point: 

deep 

underground 

to avoid muon 

background

Gaisser, Cosmic Rays and Particle Physics (2016)



discovery of atmospheric neutrinos

(1965-68)

Kolar Gold Fields detector

Case Western Irvine/South Africa Neutrino Detector
31



νμμ-

neutrino-induced muons

32



CWI detector
8800 mwe overburden

33



KGF detector
2.3km under rock
7500 mwe
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KGF detector
2.3km under rock
7500 mwe

35



36

Cherenkov detectors
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tracking calorimeters

Kajita, New Journal of Physics 6 (2004) 194



again:

go deep underground

38
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data collected 

since discovery

KGF, India (plastic scintillator)

CWI, South Africa (liquid scintillator)

Baksan (liquid scintillator)

IMB (water Cherenkov)

Kamiokande (water Cherenkov)

NUSEX (streamer tubes)

Frejus (flash tubes)

*take dates with caution – list is incomplete

1960 1970 1980 1990 2000 2010

Soudan2 (tracking cal)

MACRO (scint, counters, tracking)

Super-Kamiokande

ANTARES

AMANDA / AMANDA II IceCube
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on the early experiments

-motivated by the search for proton decay

-atmospheric neutrinos were not the goal

-but now we know a little more



41

physics motivation
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why atmospherics?

Neutrino detector

direction → baseline

~10km - ~12,700km

different e- density 

along paths

Borrowed from T. DeYoung
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survival probabilities

arXiv:1509.08404 [hep-ex]

http://arxiv.org/abs/1509.08404
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survival probabilities

arXiv:1509.08404 [hep-ex]

vacuum resonances saturation vacuum resonances saturation

vacuum: resonance: saturation:
ν
τ
 appearance

http://arxiv.org/abs/1509.08404
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exotic possibilities

sterile neutrinos
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exotic possibilities

sterile neutrinos

-modify std. osc. effect

-add osc. at E ~ TeV

- modify P(νμ→ νμ)
Standard oscillations
3+1 sterile state

for cosθ = -1 (crossing all of the Earth)
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wide baseline, energy range

Borrowed from J.Conrad

beams = lines
atmospherics = regions
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wide baseline, energy range

Borrowed from J.Conrad

beams = lines
atmospherics = regions

-large L&E regions of 

phase space

-2 ν, anti-ν flavors in 

“beam”

-on/off signal regions

-E > τ threshold
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and the off-signal regions?

-used to probe 

exotic possibilities

-all show as 

distortions in the 

spectrum
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recent atmospheric

neutrino measurements
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Super-Kamiokande

Muon-like event

Two-gamma-like event

http://www.ps.uci.edu/~tomba/sk/tscan/pictures.html~40m

~
4
0
m
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Super-Kamiokande

from Neutrino'98 presentation
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Super-Kamiokande
Standard oscillations

Phys. Rev. D 109 07214 (2024)
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Super-Kamiokande
NuTau appearance

Phys. Rev. D 98, 052006 (2018)

4.6σ evidence 

for NuTau 

appearance
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Super-Kamiokande

- search for spectral 

distortions due to steriles

- sensitive to νμ ντ mix

Sterile neutrinos
Phys. Rev. D 91, 052019 (2015)

90% limit on mixing
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12 GeV ν
μ
 interaction

8 GeV track (R~40m) + 4 GeV cascade

IceCube DeepCore
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IceCube DeepCore
Standard oscillations (2024)
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IceCube DeepCore
Standard oscillations (2024)
arXiv:2405.02163 [hep-ex]
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IceCube DeepCore
NuTau appearance
Phys. Rev. D 99, 032007 (2019)
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IceCube DeepCore
Sterile neutrinos
arXiv:2407.01314 (2024)

-there is no preference 

for a sterile neutrino 

state mixing at “low” E
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IceCube DeepCore
Non-standard interactions
Phys. Rev. D104 (2021) 072006

-there is no 

preference for 

additional 

NSIs
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IceCube (high energy)

E
nu

 ~ TeVs

excluded

Sterile neutrinos
arXiv:2405.08070 (2024)
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KM3NeT-ORCA
water Cherenkov

Standard oscillations
ORCA with 6 lines
Presented at Neutrino 2024



magnetized steel & scintillator calorimeter
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MINOS
Nucl.Phys. B908 (2016) 130-150

*measurement is dominated by beam data
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towards the future
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main interests

-precision measurements

-neutrino mass ordering

- Earth tomography

-CP-violation in leptons*

… bigger, better, denser experiments
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Hyper-Kamiokande

-8x Super-Kamiokande's FV / tank

-260kt mass / tank

-atmospheric+beam nus



the IceCube upgrade
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Fully funded (NSF+partners)
Deployment to occur 2025-2026
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the IceCube upgrade

osc. parameters

nutau appearance
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ORCA
mass ordering 

(3y)
J.Phys. G43 (2016) no.8, 084001



P-ONE: 

the Pacific Ocean 

Neutrino Explorer

-IceCube-like array

-Off the coast of 

Vancouver island

-Funding for first 

demonstrator 

secured
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other experiments

JUNO

atmospheric ν are a secondary measurement
mass ordering sensitivity from atm. ν only

J. Phys. G 43 (2016) 030401

DUNE

Mooney, CoSSURF 2017

40kt LarTPC
modular design

mass ordering from 

reactor neutrinos

CP violation from 

beam neutrinos



73

final words
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summary & outlook

-atm. nus are an invaluable tool for neutrino physics

-very large & unique phase space in L/E, flavor

-experiments producing well understood, reliable results

-next generation measurements tough, but possible

-renewed efforts to model & understand atm nus ongoing

-more data, new software, workshops in last years
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