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Transition between galactic and extragalactic accelerators starts at ~1015eV and ends at the ankle ~1018eV.

Recent growth in the number of known sources at UHE (≥100 TeV)  - mainly thanks to HAWC & LHAASO

“PeVatrons” = accelerators of particles to energies ≥ 1015 eV

Cosmic Ray sources

Taylor, Nature 531 43-44 (2016)
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For the production of cosmic rays, we are mostly interested in 
the end stages of stellar evolution
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1. Nuclear burning ceases – core (Fe) contracts 

2. Electron gas becomes degenerate 

3. Mass surpasses Chandrasekhar limit à electron pressure cannot oppose 
self-gravity à rapid contraction. 

4. Heavy nuclei capture electrons, temperature increases rapidly

5. Photons disintegrate heavy nuclei, e.g. 56Fe + γ à 13 4He + 4n 

6. High density: free protons capture free electrons and turn into neutrons

7. Matter ”rains” onto proto-neutron star and is reflected at high density core

8. Outward moving shock front forms

9. Additional energy input from neutrino wind 

10. à inversion of direction of movement à Supernova explosion

Core-collapse Supernovae
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SN type I : No Hydrogen Balmer lines

Type Ia: Strong Si II absorption at 6150 Å 

Type Ib/c: no Si II absorption, Ca, O emission lines. 

SN type II : Strong hydrogen Balmer lines

Type II-L : “linear” light curve

Type II-P : “plateau” light curve

Only type SN Ia are observed from both young and old stellar populations 
à different origin 
à White Dwarfs in binary systems accreting matter from companion (see later)

Near uniform light curve evolution à can be used to measure distances

Supernovae classification

Lyman series: wavelengths between 900–1200 Å (ultraviolett)

Balmer series:
wavelengths between 3700–6500 Å (optical)

Paschen series: wavelengths between 8200–18 700 Å (infrared)
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Supernova Remnants

- Acceleration at shock fronts of SNRs:

- ~1051 erg per SN explosion

- ~10% into proton / CR acceleration

- ~ 3 events per century in Milky Way

à Would be sufficient to power Cosmic Rays

• Cosmic rays: deflected by magnetic fields 

• Interactions produce neutral messengers: 
gamma-rays & neutrinos point to source

• Motivation for gamma-ray astronomy 
à high energy particles

1 erg = 10-7 J = 0.62 TeV
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Galactic sources: Supernova Remnants

Evidence for characteristic pion bump with gamma-ray observations

Supernova Remnants interacting with nearby molecular clouds 

10/2/24 Page 83

Fermi-LAT, Science,  (2013)

H.E.S.S.  A&A 516 (2010) A62



Very High Energy Gamma-ray Sky
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http://tevcat2.uchicago.edu/


Very High Energy Gamma-ray Sky
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H.E.S.S. Galactic Plane Survey

SNRs

PWNe

composite
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Pulsar: Rotating neutron star

Formed during collapse of a stellar core, sustained 
against gravity via neutron degeneracy pressure

Angular momentum conserved à very rapid rotation 

Magnetic flux conserved à very strong and variable B 
field ~1011 – 1014 Gauss

Crab pulsar: X-ray, infrared & optical

Credit: NASA/CXC/SAO/STScI

Magnetic field 
lines

Radiation 
beam

Spin 
axis

What are Pulsars?
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Pulsars

Discovered in 1967 – astrophysical signal with very short periods

Rotation velocity at surface must be less than the speed of light, c:     c < W0

)E

“Light cylinder” = radius at which particles would have to travel at c to co-rotate 

Typical size R ~10 km 
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https://www.jb.man.ac.uk/~pulsar/Education/Sounds/sounds.html 

https://www.jb.man.ac.uk/~pulsar/Education/Sounds/sounds.html


Pulsar energy loss

Change in spin frequency over time: Ω̇ = −iΩ+ where n is the braking index 

Assume pure magnetic dipole radiation (n = 3) corresponding to the loss in kinetic energy

Pulsars are precise astronomical clocks 

e.g. Crab pulsar: P = 33 ms = 0.0333924123 ± 1.2x10-9 s and Pdot = 4.20972x10-13 s/s ± 3.0x10-18 s/s 

Energy loss:   >1
>X
= −

3)E2@!"3 YZ[ \!

3O#04W5

Near constant until a time τ0 has elapsed. 

02/10/2024 88



Pulsar Population

Consider the known pulsar population

Typically shown on a “p-pdot” diagram, 
i.e. period vs period derivative

Blue lines = characteristic timescale B0 =
W

(+(')Ẇ

Red lines = spin-down luminosity 

Green lines = magnetic field 

Lower left = millisecond pulsars

Black line = “death line” à pulsed signals are typically not 
observed beyond this line. 
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3PC Fermi-LAT Collaboration, Smith et al.  ApJ 958 (2023) 191



Energetic pulsar environments

Pulsars listed in the ATNF

More energetic or closer pulsars dominate TeV detections

Some outliers – likely poor distance estimate or misattributed

02/10/2024 90

Geminga

Crab

Vela
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Pulsar – Pulsar Wind – Pulsar Wind Nebula

à Charged particles 
accelerated in 
magnetic fields radiate

à Radiation produces 
e+ – e- pairs

Nebula of high energy 
particles à Mainly e± 
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Giacinti, AM, Lopez-Coto et al, A&A 636, A113 (2020)

Pulsar Wind 
Nebulae (PWN)

à Pulsar Halos

Evolutionary stages of pulsar environments

92A. Mitchell           ECAP, FAU Erlangen-Nürnberg           Gamma-ray Astronomy

Vela X
Crab



Crab Nebula
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Pulsar Wind Nebula – “Standard candle” of TeV gamma-ray astronomy

• First TeV source: Whipple 1989

• Highest energy photons > 1 PeV

• Brightest VHE gamma-ray source à ”Crab” units

• t = 0.94 kyr, /̇ = 4.5x1038 erg/s, d = 2 kpc 

Z. Cao et al. LHAASO collaboration, Science 373, 425-430 (2021)

VHE extension: 52” 

H.E.S.S. collaboration, 

Nature Ast. 4, 167-173 (2020)

Joint Fermi & HESS analysis

A&A 686 (2024) A308
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Pulsed emission from pulsars 
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Pulse profile depends mainly on the angle of the beam with respect to Earth

Opening angle may be different depending on the wavelength

Typical profile includes P1, P2 and bridge emission 



Vela Pulsar
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H.E.S.S. collaboration, Nature Astronomy, 7, 1341-1350 (2023)

• Pulsed emission detected up to 20 TeV

• Predominantly from the P2 pulse

• t = 11 kyr, /̇ = 7x1036 erg/s, d = 287 pc 



Pulsar Wind Nebulae 
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• Most numerous source class in the VHE gamma-ray sky Vela X

Crab

MSH 15-52

A&A 435, L17-L20 (2005)

SCT

https://news.ucsc.edu/2020/06/crab-nebula.html 
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Example Stage 2: Vela X
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Pulsar Wind Nebula

• Age = 11.3 kyr 
Energy output = 6.9x1036 erg/s 
Distance = 0.28 kpc 

• R: radio = 12.2 pc 
X-ray = 3.08 pc 
TeV = 2.9 pc

H.E.S.S. Collaboration, A&A 627, (2019) A100
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pulsar wind
nebula
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Radio γ-rayX-ray

eROSITA, Mayer et al. A&A 676, A68 (2023)

Hinton et al. ApJ 7, 1-5 (2011)



Pulsar Wind Nebulae 
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H.E.S.S. collaboration et al. A&A 621 (2019) A116

HESS J1825-137

> 1 TeV
gamma−rays

trajectory
>10 TeV e+/−
nebula
pulsar wind

term. shock
pulsar wind

pulsar

remnant

RS
CD

FS

velocity

gradient

(in all 3 panels)

Stage 2 (t ~ 10 − 100 kyr)

ISM density PWN

supernova

pulsar

~Stage 1 (t < 10 kyr)

halo
Stage 3 (t > 100 kyr)~

SNR

ISMSNR

SNR

ISM

ISM

PWN

ISM

PWN

Principe et al. A&A 640 (2020) A76

• Age = 21.4 kyr 
Energy output = 2.8x1036 erg/s 
Distance = 3.9 kpc 

• R: radio = ? pc 
X-ray = 9.1 pc 
TeV = 50 pc



Example transition: HESS J1813-178
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Joint fit to Fermi-LAT and H.E.S.S. data yielded 
a core component A and extended component B

Modelled as electron populations of different 
ages released from the pulsar

Energy density is PWN-like and halo-like 
respectively

T. Wach, H.E.S.S. (A&A submitted)



Particle transport – electron cooling
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Size decreases with increasing energy

à Due to cooling losses as particles are transported away from the pulsar

à Increasing spectral index – less high energy particles

à Combined X-ray and gamma-ray: constrain magnetic field strength

X-ray gamma-ray

Gelfand & AM, Handbook of X-ray and gamma-ray astrophysics arXiv:2208.11026

A. Mitchell           ECAP,      Gamma-ray Astronomy



Pulsar halos
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Crab, Stage 1 Typical TeV 
PWNe, Stage 2

Geminga, Stage 3
Giacinti, AM, Lopez-Coto et al, A&A 636, A113 (2020)

ß Low energy density in electrons 
compared to the ISM

A small number of energetic 
pulsars dominate the CR 
electrons. à 

Can be a large number of halos, 
yet contribute less to the CR 
electrons 

Crab

Geminga



Pulsar halos: e.g. Geminga
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- First identified at TeV energies by Water Cherenkov Detector HAWC
Larger field-of-view à less angular size bias

- IACTs such as H.E.S.S. have since put effort into improving analysis 
sensitivity to extended sources 

- Consistent view of the Galactic Plane (H.E.S.S. & HAWC, ApJ, 917, 2021, 6)
à several extended sources seen by HAWC now detected in H.E.S.S. data

H.E.S.S. & HAWC Collaborations, ApJ 917 (2021) 6
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Pulsar halos: e.g. Geminga
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- First identified at TeV energies by Water Cherenkov Detector HAWC
Larger field-of-view à less angular size bias

- IACTs such as H.E.S.S. have since put effort into improving analysis 
sensitivity to extended sources 

- Consistent view of the Galactic Plane (H.E.S.S. & HAWC, ApJ, 917, 2021, 6)
à several extended sources seen by HAWC now detected in H.E.S.S. data

- Detection of the canonical halo around the Geminga pulsar

- t = 342 kyr, "̇ = 3.2x1034 erg/s, d = 0.25 kpc 
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H.E.S.S. & HAWC Collaborations, ApJ 917 (2021) 6
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Electron Diffusion in the Geminga Halo
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Lopez-Coto et al. Nat. Ast. 6 (2022) 199-206

• VHE gamma-ray emission extended scales >> X-ray size

• Emission profile indicates diffusion far below the Galactic average à not expected for particles escaped into the ISM

• H.E.S.S. results can be consistently described with MWL data under a slow diffusion model 

H.E.S.S. Collaboration A&A (2023)



Diffusion modelling of the Geminga pulsar halo
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• Model of continuous electron injection by the pulsar and diffusion 
through the halo

• Peak diffusion radius corresponds to the age of the system via electron 
cooling losses

• Parameter scan: varied n, δ, α, η, B & Ec
à 243 possible combinations 

• Diffusion Coefficient normalisations significantly below galactic average 
values are preferred  

A. Mitchell           Gamma-ray Astronomy



Cosmic Ray Electron Spectrum
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• Recent measurements of slow diffusion in accelerator vicinity 

• Generally need a local source contribution to explain the high energy CR electron spectrum

• Nature unclear: local SNR, local pulsar....

Fornieri et al. JCAP 02 (2020) 009 Lopez-Coto et al. PRL 121 (2018) 251106Evoli et al PRD 98, 063017 (2018)

∆E ± 15% due to
hadronic interaction 
model uncertainties



PeVatron candidates

2 October 2024

Recall: galactic Cosmic Rays must reach at least “knee” energies of ~3 PeV

à Search for accelerators of hadronic particles: “PeVatrons” 

à Gamma-ray signatures are roughly a factor 10 lower energy, i.e. around 100 TeV

Potential source classes: 

– supernova remnants?
– Galactic Centre region?
– stellar clusters?
– escaping CRs interacting with clouds? 
– Unidentified sources? 

G106.3+2.7 / Boomerang nebula

MAGIC collaboration A&A 671, A12 (2023)

A. Mitchell           ECAP, FAU Erlangen-Nürnberg           Gamma-ray Astronomy



Dark sources
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Incl. Globular clusters

Dark à no known counterparts
Unidentified à acceleration method unclear
(e.g. multiple counterparts)

H.E.S.S. Collaboration A&A 653 A152 (2021)

A. Mitchell           ECAP, FAU Erlangen-Nürnberg           Gamma-ray Astronomy

HESS J1702-420

LHAASO Zhe Li ICRC(2023)

H.E.S.S. Collaboration A&A 531 L18 (2011) “Very-high-energy gamma-

ray emission from the 

direction of the Galactic

globular cluster Terzan 5”



Stellar clusters
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Groups of stars that are formed at 
approximately the same time from the same 
cloud of gas and dust. 

à All members have roughly the same age 
and initial chemical composition

à All members are located at approximately 
the same distance from Earth

à All members are gravitationally bound to 
other cluster members

Types: 

• Young, massive stellar clusters (~Myr) 

• Open clusters (~Myr – 100Myr)

• Globular clusters (~10s Gyrs)

Westerlund 1, young massive stellar cluster, JWST 

Messier 3, globular cluster, University of Arizona 



Stellar Clusters and Cygnus Superbubble
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Morlino et al. MNRAS 504 (2021) 6096-6105

• Collective stellar winds drive a shock in the interstellar medium

• Requires typically young stellar clusters / massive star forming regions

• Highest energy photon measured to date: 1.42 ± 0.13 PeV à from Cygnus region? 
LHAASO J2032+4102 (Cao et al. Nature 594 (2021) 33-36 )

• HAWC Cygnus cocoon (Nature Astro. 5 (2021) 465-471)

A. Mitchell           ECAP, FAU Erlangen-Nürnberg            Gamma-ray Astronomy



Which stellar clusters are PeVatrons? 
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• Most promising clusters identified based on Gaia catalogue

• Caveat: cluster bubbles have a large angular size (1º - 10º) 
à low surface brightness
  

A. Mitchell           Gamma-ray Astronomy S. Celli, AM, A. Specovius, G. Morlino, S. Menchiari (ICRC2023)

Preliminary



Stellar Clusters

2 October 2024

• Collective stellar winds drive a shock in the 
interstellar medium

• Requires typically young stellar clusters / 
massive star forming regions

• Member stars with strong individual winds 

A. Mitchell           ECAP, FAU Erlangen-Nürnberg            Gamma-ray Astronomy
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Highest energy gamma-ray sky > 100 TeV
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• Sky maps by LHAASO, Tibet-ASγ and HAWC: 

• !( > 100 TeV (!)~1 PeV; !*~183 TeV) 
à ~12 sources

• Cao et al. Nature 594 (2021) 33-36

• Most associated with pulsars 

• Generally, pulsars are associated with 
leptonic emission (e+ & e-)



Highest energy gamma-ray sky 
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• Sky maps by LHAASO, Tibet-ASγ and HAWC: !( > 100 TeV (!)~1 PeV; !*~183 TeV) 
à ~12 sources       Cao et al. Nature 594 (2021) 33-36

• 2023:  ~ 75 gamma-ray sources above 25 TeV, 
43 above 100 TeV 
à all located in our Galaxy 
1st LHAASO Catalogue, 
Cao et. al. arXiv:2305.17030v1

• Many unassociated 
– no known counterpart

• Most common identified
counterparts are pulsars 

• Generally, pulsars are associated 
with leptonic emission (e+ & e-)



UHE leptonic emission & Klein-Nishina effect

• In high radiation environments, 
synchrotron cooling dominates over IC 
losses, even into Klein-Nishina regime. 
(IC cross-section suppressed) 

• Resulting spectrum is harder / cut-off is 
less pronounced. 

• Leptonic spectra out to PeV energies 
can be observed
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Inverse Compton proceeds in two regimes:  
Thomson regime & Klein-Nishina regime in 
which an electron loses a small or large 
fraction of its energy respectively. 



Klein-Nishina cut-off à sub-dominant hadronic component 
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e.g. Crab Nebula

Aharonian & Atoyan, proc. “Neutron Stars and Pulsars” 439 (1998) 

Nie et al, ApJ 924, 42 (2022) 

A sub-dominant hadronic component could be revealed at the highest energies, 
beyond the Klein-Nishina cut-off

 

A. Mitchell           ECAP, FAU Erlangen-Nürnberg            Gamma-ray Astronomy



Gamma-ray signatures of cosmic rays 
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àProtons (and heavier nuclei) escape from 
accelerator – will interact with nearby clouds

àPredict and search for gamma-rays from clouds 
identified in radio 

àCan use clouds in vicinity of accelerators to probe 
escape of protons and constrain their presence

AM et al. MNRAS 503 
3522-3539 (2021)

Aharonian et al, PRD 101, 083018 (2020) 



SNR + Cloud Model: particle and gamma-ray flux

Particle flux from an impulsive accelerator, α = 2 (Aharonian & Atoyan ‘96)

Gamma-ray flux Φγ produced by interactions with a target cloud (Kelner et al 2006)

If particles fully traverse cloud, observable flux is normalised 
based on the cloud volume. 

Otherwise, a cell-based integration is performed over the partial 
cloud volume that the particles have traversed.

10/2/24 Page 119A. Mitchell           ECAP, FAU Erlangen-Nürnberg            Gamma-ray Astronomy



SNR evolution and particle escape

Particles of different energies are released at different times during the evolution of the SNR. 

Assume all SNR considered to be in the Sedov-Taylor phase 
(~ 100yr – 50kyr ), Sedov time = 1.6kyr (type II), β = 2.5

Meanwhile, the SNR radius also expands.

Then:
 – diffuse through ISM to reach cloud
 – particle interactions with cloud 

10/2/24 Page 120A. Mitchell           ECAP, FAU Erlangen-Nürnberg            Gamma-ray Astronomy



Preliminary

SNRs as PeVatrons 

If all SNRs act as PeVatrons for a short time (i.e. Emax at the Sedov time), 
how many should be detectable now? 

Explore parameter phase space of model 

Fit to data where possible (e.g. RX J1713...) 

Once particles have been accelerated by the SNR:
 – diffuse through ISM to reach cloud
 – particle interactions with cloud 
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N. Scharrer, V. Joshi, S. Spencer, AM 

Preliminary



Cloud – SNR properties: example spectra

Primary variables (aside from model assumptions) are:

• SNR age (t): peak shifts to lower energies for older SNRs

• Cloud density (n): higher density = more flux

• SNR-cloud separation distance (d): 
it takes more time for lower energy particles to arrive

10/2/24 Page 122

AM, Rowell, Celli, Einecke MNRAS 503 (2021)
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LHAASO J2108+5157
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An intriguing dark source, discovered at UHE (Cao et al. Nature 2021)

Coincident with a molecular cloud, yet no clear accelerator nearby

HAWC detection, Veritas upper limits (Kumar et al, ICRC2023, 941)
Fermi-LAT detection

Constrain properties of molecular clouds à scan parameter space to constrain 
potential SNR properties 

A. Mitchell           ECAP, FAU Erlangen-Nürnberg            Gamma-ray Astronomy Abe et al. A&A 673 (2023) A75

AM A&A 684 A66 (2024)



Galactic Centre Region

HESS J1745-290 is a point-like source consistent with Sgr A* at the centre 
of our galaxy, yet the emission mechanism remains unknown.

G0.9+0.1 is a compact pulsar wind nebula 

Two bright point-like sources – contributions removed via modelling

A bright ridge of emission remains, consistent with CO gas contours

à Evidence for diffuse emission in the central 200 pc of our Galaxy

An iterative fitting procedure can characterise the different components

02/10/2024 127HESS collaboration A&A 612, A9 (2018)



Galactic Centre PeVatron? 

Evidence in the vicinity of the galactic Centre for a former powerful accelerator 
reaching ~PeV energies

Density profile implies continuous injection into the region
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H.E.S.S. Collaboration, Nature 531 (2016) 476-479

_>KRR ≈ 4j / k



Binary Systems: Microquasars, Colliding wind binaries...

Gamma-ray emitting binaries:
à Colliding Wind Binaries 
à Gamma-ray binaries
à Microquasars (solar mass BHs)
à Novae

02/10/2024H.E.S.S. Collaboration A&A 635 A167 (2020) , HST

MAGIC & VERITAS Collaborations ApJ 867 L19 (2018)

Eta Carinae: P ~5.5yr

PSR J2032+4127/Be: P ~50yr



LS 5039 – binary with 3.9 day period (microquasar?) 

Binary system comprised of an O star 
(~22.9 Msun) and a compact object 
(Black hole?) ~3.7 Msun. 

Lomb-Scargle Periodogram – Fourier 
Transform to find peak frequency in data
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Energy-dependent emission from the jets of SS433

SS 433 microquasar producing powerful jets

H.E.S.S. detection of emission from the outer jets

Indications for an energy-dependence of the emission along the jets

Constrains the particle launch velocity to (0.08 ±0.03)c
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H.E.S.S. Collaboration, Science, 383, p. 402-406 (2024)
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Novae – outbursts from accreting binary systems 
(White Dwarf + massive donor):

- (Classical) Novae à outbursts from cataclysmic variables

- Symbiotic Novae à red giant / “evolved” donor star

- Recurrent Novae à multiple observed outbursts 

- Dwarf Novae à mini-outbursts (not thermonuclear)

Thermonuclear explosion ignited on surface of white dwarf 

Increase in optical brightness ∆mv ~ 8 to 15

Typical optical duration weeks to months



Stellar Novae

Initial X-ray flash as thermonuclear burning is ignited

Rapid rise in optical magnitude

Gamma-ray emission from particle acceleration at shocks

Infrared emission from dust

Shock emergence à X-ray emission, no longer gamma-rays

Eventual return to quiescent state
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First Nova in VHE gamma-rays: RS Ophiuchi 
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Binary of white dwarf and red giant 

• Binary system comprised of 
white dwarf and red giant at 
~1.4 kpc  distance

• Semi-regular explosions 
observed since 1898 

• Last two: 12th February 2006 
and 8th August 2021 
reaching mv = 4.6  
(cf quiet state mv = 12.5)

à Detected by H.E.S.S., MAGIC 
and LST in VHE gamma-rays
(Atel 14844)

Hadronic scenario preferred

H.E.S.S. collaboration Science 376 (2022) 77-80

M
A

G
IC collaboration
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str. 6 (2022) 689-697
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Gamma-ray flux decay
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Optical peak occurred at T0 = 59435.25 (MJD) 

VHE gamma-ray flux peak seen by H.E.S.S. is delayed with respect to Fermi-LAT

Consistent decay slope after peak flux is attained 

250 GeV to 2.5 TeV

60 MeV to 500 GeV

Peak flux @ GeV
Max Energy: 1 TeV

It takes time to reach the theoretical maximum energy 

Either: cooling limited (leptonic)

Or: confinement limited (hadronic)
until particles become sufficiently energetic to escape the shock



Shock expansion
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Find asymmetric expansion & bipolar outflow 
(perpendicular to accretion disk) 

Maximum energy: 

For RS Oph, Emax ~10 TeV for 1% efficiency and

i.e. theoretical limit for the maximum energy via diffusive shock acceleration reached in nature
If results scale, this supports SNRs as the origin of PeV cosmic rays  



Future observations of novae
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It is thought that all novae eventually recur

Yet to date, only a limited number of repeating systems are known

T Coronae Borealis is expected to erupt *imminently* (overdue) 

Peak brightness ~ magnitude 2 (naked eye visible)
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III – Extragalactic Sources and Fundamental Physics



Extragalactic Sources: Large Magellanic Cloud (LMC)?
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Satellite galaxy of the Milky Way at ~50 kpc distance

Individual emitters are powerful sources of galactic types:

N132 D – radio-loud SNR
core-collapse SNR, ~6kyr yet maximum energy still in TeV range

N157 B – powerful PWN
Similar spin-down luminosity to the Crab nebula, 4.9x1038 erg/s

30 Dor C – superbubble 
X-ray synchrotron shell with radius 47 pc à large, yet young 
(~few kyrs) and powerful with high luminosity

H.E.S.S. Collaboration, Science 347 406-412 (2015)

H.E.S.S. Collaboration, ApJLett (2007)



Extragalactic Sources: Large Magellanic Cloud (LMC)?
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Assuming a constant fraction ~11% 
of the spin-down power gets 
injected into the nebula. 
B-field ~45µG (cf Crab ~124µG) 

H.E.S.S. Collaboration, ApJLett (2007)

Hadronic vs leptonic scenarios for the TeV emission à 
both viable for the SNR & superbubble. 

However, no TeV emission detected yet from SN 1987 A. 
Why? Expect flux to be rising over time, at least in early 
evolutionary stages... 



TeVCat source distribution
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Active Galactic Nuclei (AGN)
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Unified model

Different features dominate depending on the viewing angle 

Seyfert 1 – broad and narrow emission lines are present

Seyfert 2 – narrow emission lines are present, but no broad lines

Blazars – orientated such that the observer is looking along the jet 
“down the barrel of the gun” θ < 15º 

S. Cielo (2015)



Active Galactic Nuclei (AGN)
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Unified model 

Radio-Loud: 
Emission dominated by non-thermal processes (jet-related)

Radio-Quiet: 
Emission dominated by thermal processes (multi-band) 

l^ ∝ J(Q

Flat spectrum: α < 0.5              (Steep spectrum: α > 0.5)
FSRQ – strong & broad emission lines
BL Lac – weak emission lines

 

Beckmann & Shrader (2012)



Optically thick: B%% > 1
Optically thin: B%% < 1

Mean free path: B^ = X@^ n^ = 1

Extragalactic Background Light (EBL)
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Pair-production of gamma-rays interacting with background 
photon fields yields an energy-dependent gamma-ray horizon.

(where B%% = 1) 

Cooray

Z^(;) = Z^ 0 V(_6



Extragalactic Background Light (EBL)
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Gamma-ray attenuation must be corrected for in 
order to recover the true gamma-ray spectrum.  



Galaxies in Gamma-rays
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Markarian 421

Bright and highly variable nearby blazar
z = 0.030

Define variability index (Vaughan 2003):

o/=< =
l) − @N<<

)

̅̀)
	

For the variability compared to 
expectation and measurement error in a 
given frequency band. 

Arbert-Engels et al. A&A 647, A88 (2021), HESS HAWC collaboration ApJ 929 125 (2022)



Galaxies in Gamma-rays
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Markarian 501

Bright and highly variable nearby blazar
z = 0.034

 

HAWC collaboration ApJ 929 125 (2022)H. Abe et al 2023 ApJS 266 37



AGN population in gamma-rays
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Fermi-LAT population distribution

FSRQ = Flat Spectrum Radio Quasar
BL Lac = Blazars reminiscent of BL Lac 
LSP, ISP, HSP = Low, Intermediate & High Synchrotron Peaked
BCU = Blazars of unknown type

4th AGN catalogue (4LAC), Fermi-LAT collaboration M. Ajello et al 2020 ApJ 892 105



Blazars – variability 
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H.E.S.S. Collaboration, ApJLett (2007)

Many blazars exhibit rapid variability

Places constraints on the origin of the radiation à must originate from a 
region R smaller than c∆t (light crossing time)

Example: exceptional flare of PKS 2155-304 in 2006  

Nearly 50x brighter flux than in its quiescent state



Rays of light follow curved space-time & bent around a massive object. 

Causes apparent positions for the observer offset from the true position

If perfectly aligned, can cause a ring-shaped image

Gravitational Lensing
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Reminder

Pinochet (2018)

61 =
4q*
:)

j`V
j`jV

j`V j`

jV



Gravitationally lensed blazar 
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MAGIC Collaboration, A&A 595 (2016) A98

Gravitationally lensed blazar QSO B0218+357 

Due to different path lengths, signal from lensed 
image is delayed with respect to the main image. 

Although MAGIC (IACTs) missed the first event, 
they were able to catch the second by 
anticipating when it would occur. 

MAGIC Collaboration, MNRAS 510, 2344–2362 (2022)



Extended Extragalactic Sources
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• Resolving extension of Centaurus A jets ≥ 2.2 kpc

• Constraining morphology of M87 and CR pressure 
in the Virgo cluster
à radio lobes excluded as associated to VHE 
gamma-ray emission 

H.E.S.S. collaboration Nature 582 (2020) 356-359 H.E.S.S. collaboration A&A (2023) EHT collaboration ApJL 875 (2019) L1

A. Mitchell           ECAP,      Gamma-ray Astronomy



Gamma-Ray Bursts
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Isotropic distribution on the sky indicated an extragalactic origin. 

Characterised as short or long duration, now also by intermediate

Population of GRB events characterised in terms of:
T90 – the time during which 90% of the energy is released (from 5% up to 95%)
HR – hardness ratio gives the ratio of flux from a GRB in hard and soft bands

Salmon et al., Galaxies 2022, 10(4), 77

Mechanism: 
Short GRBs – binary Neutron Star mergers (or NS-BH )
Long GRBs – massive star collapse (?) 
Both – jet launching 



Transients: Gamma-Ray Bursts
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First four VHE GRBs detected by H.E.S.S. & MAGIC between 2018 – 2020
(long GRBs, detected during afterglow phase)

- GRB 180720B, z ~ 0.654  (H.E.S.S.)

- GRB 190114C, z ~ 0.4245 (MAGIC)

- GRB 190829A, z ~ 0.08 (H.E.S.S.)

- GRB 201216C, z ~ 1.1 (MAGIC)

GRB 201216C

Large distances z ≥ 1 à severe attenuation due to the 
Extragalactic background light  

Interactions with EBL à strongly attenuated spectra

H.E.S.S. collaboration Science 372 (2021) 1081-5



GRB 190114C and EBL absorption

• Synchrotron self-Compton (SSC) component:
Necessary or not?

• Absorption by Extragalactic Background Light (EBL) 
à large uncertainties on models
à Need to correct spectrum

A. Mitchell           ECAP, FAU Erlangen-Nürnberg            Gamma-ray Astronomy



GRB 221009A – The BOAT

October 9th 2022 – extremely bright GRB (“once in 10,000 years event”) 

Full moon: no IACT detection L 

Special collection in ApJLett volume 946 (2023)

Saturated detectors (e.g. SWIFT)

LHAASO detection of > 5000 photons between 0.5 and 18 TeV (!!)
GCN 2677

02/10/2024

Brightest of all time 
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Starburst Galaxies
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à  Massive & high star formation rates

à “starburst” phase is short duration

à Young stars are overabundant

à Bright infrared luminosity

Detection of GeV and TeV gamma-ray emission 
likely from diffuse cosmic rays in the galaxy

In order of increasing luminosity: 
LMC, Milky Way, NGC 253, M82 compared à 

A. A. Abdo et al 2010 ApJL 709 L152

HESS collaboration, Science 326 1080 (2009), VERITAS collaboration, Nature 462 770 (2009) 



Searching for Dark Matter 
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Dark Matter upper limits from observations of dwarf spheroidal galaxies

Combined likelihood more constraining  

Other targets: Galactic centre, Galaxy clusters...



Dwarf Spheroidal Galaxies & Galaxy Clusters
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Presence of dark matter inferred in dSphs. 

Stellar kinematics & virial theorem to infer mass 
à M/L ~10-1000 much larger than ordinary / spiral galaxies. 

Total mass >> visible mass (no gas) 

In Galaxy clusters, the mass can be inferred via lensing of background stars & dynamics 

Discrepancies between visible mass and measured mass indicates the presence of dark matter

Example: Bullet cluster. Mass distribution (blue) interacts less than the visible (gas / stars) matter 
distribution following the collision

Gamma-ray observations of dSphs or galaxy clusters can place limits on e.g. the WIMP cross section. 



Other DM candidates
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Axions, Primordial BHs...

Many more exotic DM candidates

Axions à modify the gamma-ray spectrum from an extragalactic source via a 
boost at high energies / reduction in EBL absorption

Biteau & Meyer https://www.cta-observatory.org/what-propogation-of-energetic-light-can-tell-us/  

Primordial Black Holes à evaporate via Hawking radiation

For effective temperature [@a =
?7!

2E?89
 , radiation with 

wavelength
 r = 2G/[@a cannot be localised within a black hole with 
c@a = 2q*@a if the radius c@a ≪ r 

Can place limits on the primordial black hole rate. 
HESS collaboration, JCAP04(2023)040

https://www.cta-observatory.org/what-propogation-of-energetic-light-can-tell-us/


Lorentz Invariance Violation (LIV)
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• Many grand unification models and/or high-energy models that extend the 
validity range of relativity either require or accommodate some level of 
Lorentz Invariance Violation

• A common effect from this is a change in the dispersion relation of particles

• The effect is expected to be suppressed up to high energies 

• High energy cosmic rays and gamma-rays can test this effect

Suppressed up to 

high energies



LIV with gamma-rays
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The change in the dispersion relation may lead to several effects that would leave imprints on gamma-ray data:
(and other messengers)

• Energy dependent photon speed 
à GRBs

• Photon decay via highest energy photons 
à Crab

• Change in the interaction kinematics via 
EBL interactions à extragalactic spectra

• Others…

No LIV signal has been found so far, leading to 
very restrictive limits on the order of the effect.

Martínez-Huerta, Lang and de Souza, Symmetry, 2020



Neutrino Astronomy: 
flaring activity from AGN & Galactic sources

2 October 2024

Majority of extragalactic sources – blazars 

First indications of a neutrino source: TXS 0506+056 (z=0.3365)
Associated gamma-ray detection of flaring activity by Fermi-LAT & MAGIC
Chance coincidence disfavoured at ~3 sigma à Multi-messenger astronomy

Detection of the Galactic Plane in neutrinos – at 4.5σ in 10 years of IceCube data (June 2023)

Science 361 (2018) eaat1378 Science 361 (2018) 147-151

Science 380 (2023) 1338-1343 163



Gravitational Waves
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General relativity yields a wave equation for gravity: 

Which in the so-called Transverse-traceless gauge has 
plane-wave solutions: 

Total strain ℎ k =
∆`

`
= ℎ&(k) cos bk +ℎ×(k) sin bk



Gravitational Wave alerts
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Alerts (to date) from interferometers e.g. LIGO-VIRGO

Uncertainty band from GW localisation is typically larger 
than IACT field-of-view

Continuously operating ground-based particle detectors 
can place limits, but less sensitive on short timescales / 
at higher energies. 

H. Abdalla et al 2017 ApJL 850 L22

GW170817 – “Multi-messenger observations of a binary 
neutron star merger” B. P. Abbott et al 2017 ApJL 848 L12

(~3600 authors, ~3320 citations)

Future (IACT): quickly on target, divergent pointing... 



Summary

• Gamma-ray astronomy covers a wide range of energies: 100 keV – PeV    (10 orders of magnitude!)

• Different detection methods: Compton scattering & pair-production satellites, IACTs, WCDs, scintillators... 

• Detectors complementary to each other in terms of: 
Energy range, time coverage, sensitivity, resolution... 

• Analysis and calibration methods are key to exploiting data fully

• Wide variety of galactic sources: 
SNRs, pulsars, PWNe, pulsar halos, stellar clusters, binary systems, illuminated clouds, unidentified...

• And extragalactic sources: 
AGN - blazars, FSRQs, Seyferts, Starburst galaxies GRBs... But the EBL imposes a horizon.

• Gamma-ray measurements can contribute to fundamental physics & multi-messenger astrophysics: 
Dark matter searches, LIV limits, neutrino & GW alerts

• And things I didn’t have time to mention / aren’t confirmed: 
Fermi bubbles, Hubble constant, LMXBs, SGRs...
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