(photograph by S. Saffi)

Cosmic rays and air shower physics II

Ralph Engel Karlsruhe Institute of Technology (KIT)

Cosmic ray flux and interaction energies

Outline of lectures

- Cosmic rays below the knee direct measurements
- Physics of extensive air showers
- Discussion and exercises (topics to be decided)
- Cosmic rays of very high energy indirect measurements

1. Simulations

J.Oehlschlaeger, R.Engel, FZKarlsruhe

Simulation of shower development (ii)

Simulation of air shower tracks (i)

7

Particles of an iron shower

Iron 10¹³ eV

24929 m

Particles of an proton shower

21336 m

Particles of a gamma-ray shower

© J.Oehlschlaeger, R.Engel, FZKarlsruhe

Gamma 10¹³ eV

24713 m

Time structure of shower disk

11

Time structure of shower disk

sensitive to early muons

The Earth's atmosphere

Altitudo	Local doncity
(km)	(10^{-3} g/cm^3)
40	3.8×10^{-3}
30	1.8×10^{-2}
20	8.8×10^{-2}
15	0.19
10	0.42
5	0.74
3	0.91
1.5	1.06
0.5	1.17
0	1.23

Atmospheric slant depth (integral taken along shower axis)

14

Cross section, interaction rate, interaction length

Altitude (km)	Vertical depth (g/cm ²)	Local density (10 ⁻³ g/cm ³)	Molière unit (m)	Electron Cherenkov threshold (MeV)	Cherenkov angle (°)
40	3	3.8×10^{-3}	2.4×10^{4}	386	0.076
30	11.8	1.8×10^{-2}	5.1×10^{3}	176	0.17
20	55.8	8.8×10^{-2}	1.0×10^{3}	80	0.36
15	123	0.19	478	54	0.54
10	269	0.42	223	37	0.79
5	550	0.74	126	28	1.05
3	715	0.91	102	25	1.17
1.5	862	1.06	88	23	1.26
0.5	974	1.17	79	22	1.33
0	1,032	1.23	76	21	1.36

Interaction length in air

 $\lambda_{\rm int} = \frac{\langle m_{\rm air} \rangle}{\sigma} = \frac{24160\,{\rm mb~g/cm^2}}{\sigma}$ σ_{int}

Examples of numerical values

 σ_{int}

US standard atmosphere

Typical values

 $\lambda_{\gamma \to e^+ e^-} \approx 46 \,\mathrm{g/cm^2}$

 $\lambda_{\pi} \approx \lambda_{K} \approx 120 \,\mathrm{g/cm^{2}}$ $\lambda_p \approx 80 \,\mathrm{g/cm^2}$ $\lambda_{Fe}\approx 10\,g/cm^2$

3. Electromagnetic Showers

17

Energy loss of charged particles

$$E_c = \alpha X_0 \sim 85 \,\mathrm{MeV}$$

Qualitative approach: Heitler model

Shower maximum: $E = E_c$

 $N_{\rm max} = E_0/E_c$ $X_{\rm max} \sim \lambda_{\rm em} \ln(E_0/E_c)$

Cascade equations

Energy loss	$\mathrm{d}E$	E
of electron:	$\frac{1}{\mathrm{d}X} = -$	$\alpha - \frac{1}{X_0}$

Cascade equations

 $X_{\rm max} \approx X_0$ l

Bruno Rossi

(Rossi & Greisen, Rev. Mod. Phys. 13 (1940) 240)

Critical energy: $E_c = \alpha X_0 \sim 85 \,\mathrm{MeV}$ Radiation length: $X_0 \sim 36 \,\mathrm{g/cm^2}$

$$(1) + \int_{E}^{\infty} \frac{\sigma_{e}}{\langle m_{air} \rangle} \Phi_{e}(\tilde{E}) P_{e \to e}(\tilde{E}, E) \mathrm{d}\tilde{E}$$

$$P_{\gamma}(\tilde{E})P_{\gamma \to e}(\tilde{E},E)\mathrm{d}\tilde{E} + \alpha \frac{\partial \Phi_e(E)}{\partial E}$$

$$n\left(\frac{E_0}{E_c}\right) \qquad \qquad N_{\max} \approx \frac{0.31}{\sqrt{\ln(E_0/E_c) - 0.33}} \frac{E_0}{E_c}$$

Shower age and Greisen formula

Longitudinal profile

$$N_e(X) \approx \frac{0.31}{\left[\ln E_0/E_c\right]^{1/2}} \exp\left\{\frac{X}{X_0} \left(1 - \frac{3}{2}\ln s\right)\right\}$$

Shower age

$$s = \frac{3X}{X + 2X_{\max}}$$

Energy spectrum particles

(Greisen 1956, see also Lipari PRD 2009)

Mean longitudinal shower profile

Calculation with cascade Eqs.

Photons

- Pair production
- Compton scattering

Electrons

- Bremsstrahlung
- Moller scattering

Positrons

- Bremsstrahlung
- Bhabha scattering

(Bergmann et al., Astropart.Phys. 26 (2007) 420)

Energy spectra of secondary particles

energy (GeV)

Number of photons divergent, energy threshold applied in calculation

- Typical energy of electrons and positrons $E_c \sim 80 \text{ MeV}$
- Electron excess of 20 30%
- Pair production symmetric
- Excess of electrons in target

(Bergmann et al., Astropart.Phys. 26 (2007) 420)

Lateral distribution of shower particles

Displacement of particle

 $r \sim \left(\frac{E_s}{E}\right) \frac{X_0}{\rho_{\rm air}} = \left(\frac{E_c}{E}\right) r_1$

$$\frac{\mathrm{d}N_e}{\mathrm{d}E} \sim \left(\frac{E_c}{E}\right)^{1+s}$$

$$\frac{\mathrm{d}N_e}{r\,\mathrm{d}r} \sim \left(\frac{r}{r_1}\right)^{s-2} \left(1\right)$$

$$\left(\frac{E_s}{E}\right)^2 \frac{1}{\sin^4 \theta/2}$$

$$E_s \approx 21 \,\mathrm{MeV}$$

$$\langle \theta^2 \rangle \sim \left(\frac{E_s}{E} \right)^2$$

$$r_1 = r_M = \left(\frac{E_s}{E_c}\right) \frac{X_0}{\rho_{\rm air}}$$

Moliere unit (78 m at sea level)

Nishimura-Kamata-Greisen (NKG) lateral distribution function

4. Hadronic showers

Expectation from simulations

(bulk of particles measured)

core distance (km)

Cosmic ray flux and interaction energies

Expectations from uncertainty relation

Assumptions:

- hadrons built up of partons
- partons deflected/liberated in collision process, small momentum
- partons fragment into hadrons (pions, kaons,...) after interaction
- interaction viewed in c.m. system (other systems equally possible)

Longitudinal momenta of secondaries

$$\langle p_{\parallel} \rangle \sim \Delta p_{\parallel} \approx \frac{1}{R'} \approx \frac{1}{5} E_p$$

Heisenberg uncertainty relation

 $R \approx 1 \text{fm} \approx 5 \text{GeV}^{-1}$

 $\Delta x \, \Delta p_x \simeq 1$

$$R/\Gamma = R \; \frac{m_p}{E_p}$$

 $\Gamma = E_p / m_p$

Transverse momenta of secondaries

 $\langle p_{\perp} \rangle \sim \Delta p_{\perp} \sim \frac{1}{R} \approx 200 \,\mathrm{MeV}$

Typical hadronic final states

(Riehn et al. ICRC 2017)

NA49 p-p and p-C at I58 GeV

Secondary particle multiplicities

Power-law increase of number of secondary

$$n_{\rm ch} \sim s^{0.1}$$

proton - proton,	$E_{\rm lab} = 2 \times 10^{11} {\rm eV}$
------------------	--

		Exp.	DPMJET-II
	charged	7.60 ± 0.06	7.64
	neg.	7.09 ± 0.00 2 85 + 0.03	2.82
	p	1.34 ± 0.15	1.26
	n	0.61 ± 0.30	0.66
	π +	3.22 ± 0.12	3.20
	π^-	2.62 ± 0.06	2.55
π^+ \mapsto π^-	K+	0.28 ± 0.06	0.30
K ⁺ +•	K-	0.18 ± 0.05	0.20
pbar :●: p :●:	Λ	0.096 ± 0.01	0.10
1000	Λ	0.0136 ± 0.004	0.0105

Leading particles (multiplicity const.)

Competing processes of interaction and decay

 $c\tau_{\pi^{\pm}} = 7.8\,\mathrm{m}$

 $c\tau_{\pi^0} = 25.1 \,\mathrm{nm}$

Air at altitude of 8 km

$$\pi^+ ~
ightarrow~\mu^+ \,
u_\mu$$

γγ

Charged pions interact E > 30 GeV

 π^0

Neutral pions always decay

Qualitative approach: Heitler-Matthews model

Assumptions:

- cascade stops at $E_{\text{part}} = E_{\text{dec}}$
- each hadron produces one muon

(Matthews, Astropart. Phys. 22, 2005)

Primary particle proton

 π^{0} decay immediately

 π^{\pm} initiate new hadronic cascades

$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha}$$
$$\alpha = \frac{\ln n_{\text{ch}}}{\ln n_{\text{tot}}} \approx 0.85 \dots 0.95$$

Superposition model – particle numbers

Nucleus (binding energy ~5 MeV/nuc)

Proton-induced shower

Assumption:

nucleus of mass A and energy E₀ corresponds to A nucleons (protons) of energy $E_n = E_0/A$

Iron showers ~40% more muons than proton showers

$$N_{\rm max} \sim E_0/E_c$$

$$N_{\mu} = \left(\frac{E_0}{E_{\rm dec}}\right)^{\alpha}$$

 $\alpha \approx 0.9$

$$N_{\rm max}^A \sim A\left(\frac{E_0}{AE_c}\right) = N_{\rm max}$$
$$N_{\mu}^A = A\left(\frac{E_0}{AE_{\rm dec}}\right)^{\alpha} = A^{1-\alpha}N_{\mu}$$

Superposition model – depth of shower maximum

Nucleus (binding energy ~5 MeV/nuc)

Proton-induced shower

Assumption: nucleus of mass A and energy E₀ corresponds to A nucleons (protons) of energy $E_n = E_0/A$

Proton showers penetrate deeper than iron showers ~ In(A)

 $X_{\rm max} \sim \lambda_{\rm eff} \ln(E_0)$

 $X_{\rm max}^A \sim \lambda_{\rm eff} \ln(E_0/A)$

Superposition and semi-superposition models

iron nucleus

Number of

interaction

nucleons without

Glauber approximation (unitarity)

$$\sigma_{\text{Fe-air}} = \left(\frac{A}{n_{\text{part}}}\right) \sigma_{\text{p-air}}$$

(J. Engel et al. PRD D46, 1992)

Depth X

Average depth distribution of nucleon interaction points correctly described

5. Energy transfer to em. component

Electromagnetic energy and energy transfer

Electromagnetic energy

$$\frac{1}{3}E_0 + \frac{1}{3}\left(\frac{2}{3}E_0\right)$$

$$E_{\rm em} = \left[1 - \left(\frac{2}{3}\right)^n\right] E_0$$

Energy transferred to electromagnetic component

$$E_{\rm inv} = E_{\rm tot} - E_{\rm em}$$

At high energy: model dependence of correction to obtain total energy small

(RE, Pierog, Heck, ARNPS 2011)

Ratio of em. to total shower energy

Detailed Monte Carlo simulation with CONEX

Muons as tracers of the hadronic core

$$= E_{\rm tot} - E_{\rm em}$$

6. Elongation rate theorem

Longitudinal shower profiles: simulations and data

Comparison to event observed by Auger

$$N_{\rm max} = E_0/E_c$$
$$X_{\rm max} \sim D_{\rm e} \ln(E_0/E_c)$$

Superposition model:

$$X_{\rm max}^A \sim D_e \ln(E_0/AE_c)$$

Mean depth of shower maximum

Note: old data and model predictions (just for clarity)

Mean depth of shower maximum

Note: old data and model predictions (just for clarity)

Shower elongation rate

$$D_{10} = \frac{\Delta \langle X_{\text{max}} \rangle}{\Delta \log_{10} E}$$
$$D_e = \frac{\Delta \langle X_{\text{max}} \rangle}{\Delta \ln E}$$
$$D_{10} = \log(10) D_e$$

(RE, Pierog, Heck, ARNPS 2011)

Derivation of elongation rate theorem

$\langle X_{\max}(E) \rangle = \langle X_{\max}^{em}(E/n_{tot}) \rangle + \lambda_{int}$

 $\langle X_{\rm max}^{\rm em} \rangle \sim X_0 \ln(E/n_{\rm tot})$

em. cascade theory

$$\langle X_{\max}(E) \rangle = X_0 \ln(E/n_{tot}) + c + \lambda_{in}$$

taking derivative $\log E$

$$P_e = \frac{d\langle X_{\max}(E)\rangle}{d\ln E} \le X_0 - X_0 \frac{d\ln n_{tot}}{d\ln E} + \frac{d\lambda_{int}}{d\ln E}$$

Elongation rate theorem

 $X_0 = 36 \text{ g/cm}^2$

 $D_e^{\text{had}} = X_0(1 - B_n - B_\lambda)$

 $B_{\lambda} = -\frac{1}{X_0} \frac{d\lambda_{\text{int}}}{d\ln E}$

John Linsley

Alan Watson

(Linsley, Watson PRL46, 1981)

Large if multiplicity of high energy particles rises very fast, **zero in case of scaling**

Large if cross section rises rapidly with energy

Note:
$$D_{10} = \log(10)D_e$$

Mean depth of shower maximum

QGSJET predicts very strong scaling violations

Elongation rates and model features

Elongation rate theorem

Backup slides

Exotic models for the knee of cosmic ray spectrum

New physics: scaling with nucleon-nucleon cms energy

Petrukhin, NPB 151 (2006) 57 Barcelo at al. JACP 06 (2009) 027 Dixit et al. EPJC 68 (2010) 573 Petrukhin NPB 212 (2011) 235

Knee due to wrong energy reconstruction of showers?

Cosmic ray flux and interaction energies

LHC at 13 TeV cms

About 70% of energy has to be transferred to invisible particles

No sign for change of hadronic interactions seen at LHC

Effect of air density (number of generations)

Pion decay energy depends on air density, low density corresponds to large E_{dec}

Electromagnetic showers are independent of air density, hadronic showers not

