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A working example

𝜈
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Reactor

Neutrino Detector (accordig to GPT)

Observed Neutrinos



Your job as the scientist:

1. Monitor the rate
2. Tell if the rate suddenly changed, i.e. if anyone removed or add 

nuclear fuel
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Naive Analysis

A

4

Histogram

Add Errors



Calculating Averages…
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Result

• Estimated rate: 4.599 +/- 0. 214
• The rate from the theory calculation should be 5…checks out!
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Problems arise…

When you run this procedure over and 
over on new data, you find that your 
predictions are biased:

You are getting slightly 
puzzled….but it‘s probably 
a systematic uncertainty 
somewhere….or the theory 
guys are just wrong
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Anyway…

The rate is a little off, but you still 
carry on to figure out whether it‘s 
constant…

You test your constant model with a 
goodness-of-fit test
• Evaluating this gives a p-value of 

25.8 %, which looks pretty good, 
right?
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Identical 𝜒2 p-value
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𝜒2 p-value of 25.8 % 𝜒2 p-value of 25.8 % 



?!?

• Our estimated rate is 
systematically low 

• Our test cannot really tell the 
difference between a constant 
rate and something else 

→We‘re now sufficiently 
confused, and conclude that we 
need to take a statistics course

10



~ A Statistics Course ~
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Overview

Basic Properties
Probability vs. 
Likelihood
Estimators Theory 
/ Point Estimators
Principle of
maximum 
likelihood

Today
Hypothesis 
testing

Size / Power, p-
values, etc.
Constructing 
Confidence 
Intervals

Tomorrow
Bayes‘ Approach
Closed form 
solution / 
conjugate priors 
etc
MCMC for 
nummerical 
solution

Thursday
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Probability & Basic Properties
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Most things in the world are not certain. Yet, we are used to reason about 
in our everyday lives

Probability

During Games: It’s rare (but not impossible) to roll two sixes

Forecasting: It’s likely we will see a recession

Science: The data points towards the existence of a Higgs
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The rules of probability are summarized in the Kolmogorov Axioms

Axiom 1: Probability of an event 𝑥 must be positive: 𝑝(𝑥) ≥ 0

• Probabilities of two different events cannot cancel each other out
(compare to e.g. amplitudes in QM!)

Probability
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The rules of probability are summarized in the Kolmogorov Axioms

Axiom 2: Probability of anything happening is unity 𝑝(Ω) = 1

• If your world consists of six possible events (e.g. in a dice) in, it is 
guaranteed that one of them happens.

• It’s important to enumerate all possibilities

Probability
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The rules of probability are summarized in the Kolmogorov Axioms

Axiom 3: Probabilities of disjoint events add up.

• Holds only for disjoint events

• yes: roll a 3 or a 6 

• no: roll an even number or a 4

Probability

𝑝(𝑥 or 𝑦) = 𝑝(𝑥) + 𝑝(𝑦)
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Conditional Probability

Most commonly, we encounter probabilities of an outcome 𝑥 that
depend on certain parameters 𝜃

𝑥~𝑝(𝑥|𝜃)

We say „p of x given 𝜃“, and it is also called „conditional probability“

We speak of a „parametric model“ if we can express this in the form of
distributions, or at least a data-generating process (forward model)

• Sometimes this is a simple distribution with one, two parameters
• ... sometimes a very complicated model with many 100s of parameters

18



Normal Model:  𝜃 = (𝜇, 𝜎)

Occurs naturally if the measured quantity is the sum of many individual 
random processes (e.g. measurements on a detector module)
→ "Central Limit Theorem"

Examples of Parametric Models
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Examples of Parametric Models
Poisson Counting Experiment:  𝜃 = 𝜆

Occurs naturally if you are counting events that occur at a 
known rate within a fixed time window.

𝑝(𝑛|𝜃) = Pois(𝑛|𝜆) =
1

𝑛!
𝜆𝑛exp(−𝜆)
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Other Distributions

• What distributions do you know / have you heard of?

• See for example: 
https://en.wikipedia.org/wiki/List_of_probability_distributions
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Expected Value and Variance

• Expected Value 𝐸 is the mean of the possible values a random 
variable can take, weighted by the probability of those outcomes

𝐸 𝑥 = න𝑥𝑝 𝑥 𝑑𝑥

→For Poisson: 𝐸[𝑥] = 𝜆

• Variance is a measure of dispersion, meaning it is a measure of 
how far a set of numbers is spread out from their average value

𝑉𝑎𝑟 𝑥 = 𝐸 𝑥 − 𝐸 𝑥 2

→ For Poisson: 𝑉𝑎𝑟 𝑥 = 𝜆
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Cumulative Distribution

• The cumulative distribution (cdf) 𝐹(𝑥) is defined as 𝑃(𝑋 ≤ 𝑥)

• So in practice, for a continuous probability distribution 𝑝(𝑥) this is 
𝐹 𝑥 = ∞−׬

𝑥
𝑝 𝑡 𝑑𝑡

• Since probabilities are normalized, F(x) always maps p to the unit 
interval [0,1]

→ This is very useful, for example, for generating random numbers 
according to p(x), by transforming random numbers 𝑦~𝑈[0,1] via the 
inverse of the cdf 𝑥 = 𝐹−1(𝑦)
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Fixing the 1st problem: our plot

Expected 
Value 𝝀

From Variance:
± 𝝀

Observed data 𝒙
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Likelihood Function
The likelihood is simply𝑝(𝑥|𝜃) viewed as a function of 𝜃 and fixed 𝑥

The likelihood function:

The more probable the observed data 𝑥 is under a value 𝜃, the higher the 
"likelihood value" of 𝜃.

This is very different from a probability! We did not specify what 𝜃 is, 
and it cannot be assumed these are random variables

𝐿𝑥(𝜃) = 𝑝(𝑥|𝜃)
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Example: Poisson Likelihood
Consider  𝑛 ∼ Pois(𝑛|𝜆):

probabilities for
observations at
a fixed 𝜆 = 6

likelihoods for
observations for
a fixed 𝑛 = 10 26



Likelihood vs. Probability functions

Important to remember that likelihood and

probability functions are different 

(naming is a bit unfortunate & doesn't  help)
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Likelihood vs. Probability functions

Important to remember that likelihood and

probability functions are different 

Probability:

fixed parameters 𝜃, variable data 𝑥

normalized ׬ d𝑥𝑝(𝑥|𝜃) = 1
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Likelihood vs. Probability functions

Important to remember that likelihood and

probability functions are different 

Likelihood:

fixed data 𝑥, variable parameters 𝜃

not normalized ׬ d𝜃𝑝(𝑥|𝜃) = 1
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Negative Log Likelihood 

To avoid confusion and general usefulnes often we rather use
the (negative) log-likelihood LLH (NLL) function  nll(𝜃) = −log𝐿(𝜃)
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Probability vs. Likelihood

𝑃(𝑥|𝜃)

𝑥

𝜃
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Why again is the likelihood not a probability?

• Reason 1: Distribution parameters are abstract concepts and not 
per se random variables

• Reason 2: Simple counter-example:

Uniform distribution: 𝑈 𝑎 = 0, 𝑏 > 0 =
1

𝑏

න
0

∞ 1

𝑏
𝑑𝑏 = ∞ ≠ 1
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Beyond Simple Models
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Beyond simple models
Most realistic models are not simple experiments that happen to have a 
distribution named after dead people

→ to model a realistic experiment, we need to combine multiple such
basic building blocks

Poisson Gauss Laplace 34



Mixture Models
Often, the data you observe may originate from a number of sources

Examples: a "signal" process and a background process with 

The data density can then be modelled as "mixture"

With 𝑝(𝑠𝑖𝑔) + 𝑝(𝑏𝑘𝑔) = 1

𝑝sig(𝑥) = 𝑝(𝑥|sig) 𝑝bkg(𝑥) = 𝑝(𝑥|bkg)

𝑝(𝑥) = 𝑝(𝑥|sig)𝑝(sig) + 𝑝(𝑥|bkg)𝑝(bkg)
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Mixture Models
Example: 

[source] 
Gaussian Mixture Model Particle Resonances

[source] 

background

signals
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Simultaneous Measurements
Sometimes a your experiment consists of multiple 
independent sub-measurements of data 𝑥1 and 𝑥2

The joint probability is the product of each measurement's probability

... equivalently

𝑝(𝑥1, 𝑥2) = 𝑝(𝑥1)𝑝(𝑥2)

log𝑝global = log𝑝E1 + log𝑝E2
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Example:
combined Higgs mass measurement of two disjoint datasets

Simultaneous measurement

Λ(𝑚𝐻)
≈ 𝑝(data𝑍𝑍|𝑚𝐻)𝑝(data𝛾𝛾|𝑚𝐻)

(negative) Log Likelihood
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Simultaneous Measurements

• Our example consists of 30 
independent bins, each measuring 
the same Poisson rate
• This is also referred to as i.i.d. (= 

independent and identically 
distributed) in stats. literature

→ So our likelihood is:

𝐿 𝜆 = ෑ

𝑖

𝑝(𝑥𝑖|𝜆)

=ෑ

𝑖

1

𝑥𝑖!
𝜆𝑥𝑖exp(−𝜆)
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Estimator Theory
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Recap: Model vs. Observation

Observable Space

i.e. our “Data” 𝑥

Example: Values x = {1.2, -0.7, 0.3, …}

Abstract Space

i.e. a Model, often containing a number of 
parameters 𝜃

Example: Gaussian with parameters 𝜇 and 
𝜎
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From Model to Observation

Observable SpaceAbstract Space
The probability (density) 
function expresses the 
probability of observing 
the data given the model

𝑃(𝑥|𝜇 = 0, 𝜎 = 1)

Choose model parameters

Gives Probability P(x)
x is a random variable

Joint probability of observing 𝑛 data: ς𝑖 𝑝(𝑥𝑖) 42



And back…?

Observable SpaceAbstract Space

Here P has taken the role of a 
likelihood!
i.e. the probability viewed as a 
function of its parameters

𝑃(𝑥 = {1.2, −0.7, 0.3, …}|𝜇, 𝜎)

Estimate model parameters
Given a set of observations x

→ The likelihood allows us to make statements about the model given data
43



Estimators

Estimators are functions of the data (i.e. "statistics")  መ𝜃(𝑥) that
give an estimate of a parameter of the underlying model 𝑝(𝑥|𝜃0).

Since the data is random, the estimate መ𝜃 is random as well

• no guarantees that any particular estimate is close to 𝜃0
• but we can make statements w.r.t repeated experimentation

i.e. long-run properties of estimators
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For finite sample sizes we expect estimators to deviate from the true 

value. Under repeated experiments there's a distribution 𝑝(෠𝜃 (𝑥)|𝜃)

Estimate Distribution

Estimate ෠𝜃(𝑥)

true value 𝜃
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Consider a Gaussian Model with 𝑛 i.i.d. samples 𝑥𝑖 ∼ 𝒩(𝑥𝑖|𝜇, 𝜎
2)

A simple estimator is the "sample mean"

Distribution of the estimator for

Example: Gaussian Mean

𝑓(𝑥) = 𝑥 =
1

𝑁
∑
𝑖
𝑥𝑖

For 𝑛 = 10, 𝜇 = 3, 𝜎2 = 4

Note: 𝜇 = 𝔼𝑥𝑥!
46



Consistency
A desirable property is that estimators are "consistent"

• more data provides you a better estimate on average

• estimation value probability accumulates close to the true value

lim
𝑛→∞

𝑝(| ෠𝜃 (𝑥) − 𝜃0| > 𝜖) = 0; ∀𝜖

𝜃
̂

(𝑥)

true value 𝜃0

𝜃
̂

(𝑥)

true value 𝜃0

large sample
small sample

𝜖 𝜖 47



Consistency at play in our Gaussian Example

• sharpening of  the distribution around the true value 𝜇

Example: Gaussian Mean

𝑓(𝑥) = 𝑥 = ∑
𝑖
𝑥𝑖

For 𝑛 = 10, 𝜇 = 3, 𝜎 = 1

𝑥 is a consistent estimator of 𝜇
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A key metric is the bias of the estimator:

• deviation of the expectation value of መ𝜃 (𝑥) from the true value

• generally people prefer unbiased estimators

Estimator Bias 

unbiased estimator biased estimator

𝑏 = 𝔼[ ෠𝜃 (𝑥)] − 𝜃0
bias
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Consider a Gaussian Model with 𝑛 i.i.d. samples 𝑥𝑖 ∼ 𝒩(𝑥𝑖|𝜇, 𝜎
2)

Example: Gaussian Mean

𝑓(𝑥) = 𝑥 = ∑
𝑖
𝑥𝑖

For 𝑛 = 10, 𝜇 = 3, 𝜎 = 1

𝑥 is a consistent and unbiased
estimator of 𝜇
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Same Gaussian Setup:  but with the sample variance as a statistic

Note: 𝔼𝑥[𝑠
2] ≠ 𝜎2 !

𝑠2 is  a biased estimator of 𝜎2

Example: Gaussian Variance

𝑓(𝑥) = 𝑠2 =
1

𝑛
∑
𝑖
(𝑥𝑖 − 𝑥)2

For 𝑛 = 10, 𝜇 = 3, 𝜎 = 1

bias!
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The sample variance is still consistent though:

Example: Gaussian Variance

𝑓(𝑥) = 𝑠2 =
1

𝑁
∑
𝑖
(𝑥𝑖 − 𝑥)2

For 𝑛 = 10, 𝜇 = 3, 𝜎 = 1

𝑠2 is  a consistent but biased
estimator of 𝜎2
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A second metric is the variance of the estimator:

• spread of the estimator around its expectation value

• generally lower-variance is preferred over high variance

Estimator Variance 

high-variance estimator low-variance estimator

𝜎𝜃 = 𝔼[( ෠𝜃 − 𝔼[ ෠𝜃 ])2]
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Same Gaussian Model with 𝑛 i.i.d. samples 𝑥𝑖 ∼ 𝒩(𝑥𝑖|𝜇, 𝜎
2)

In a sample 𝑥 = (𝑥1, … , 𝑥𝑛) each 𝑥𝑖 is an
unbiased, consistent estimator of 𝜇.
e.g.  𝑓(𝑥) = 𝑥1

Why even compute the sample mean 𝑥 ? 
It has much lower variance!

Variance Example: Gaussian Mean
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Example
• 𝑛 samples from a unit 

normal, which has
𝜇 = 0
𝜎 = 1

(Sample mean +/- sample 
variance shown in blue)

• What is the variance of the 
sample mean? 

𝑉𝑎𝑟 ҧ𝑥 = ?
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Variance of sample mean

• Exercise: calculate
𝑉𝑎𝑟 ҧ𝑥 = ⋯

=
𝜎2

𝑛

56



CLT revisited

• What does this remind you of?
→Central Limit Theorem of course!

• Suppose we make repeated, 
independent draws 𝑥𝑖 of a probability 
distribution 𝑝
• Average (sample mean) ҧ𝑥 = 1

𝑛
∑𝑥𝑖

• If p has finite mean and variance, then ҧ𝑥
is distributed according to a 𝓝൫

൯
𝝁, 𝝈/

𝒏 !

CLT using uniform distribution
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Cauchy

What about a Cauchy 
distribution?

𝑝 𝑥 𝑥0, 𝛾 =
1

𝜋

𝛾

𝑥 − 𝑥0
2+ 𝛾2

• The distribution does not 
have finite moments!!
• ҧ𝑥 is not a good estimator for 
𝑥0! It is not consistent
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Normal vs. Cauchy
G

au
ss

ia
n

Sample standard deviationSample mean

C
au

ch
y

59



Bias - Variance Decomposition

Both bias and variance contribute to the overall expected deviation, 
i.e. mean squared error (MSE), from the true value 𝜃0

𝜎𝑚𝑠𝑒 = 𝔼𝑥 መ𝜃 − 𝜃0
2

= 𝔼𝑥 መ𝜃 −
෠
𝜃 +

෠
𝜃 − 𝜃0

2

= 𝑣𝑎𝑟 መ𝜃 + 𝑏𝑖𝑎𝑠 መ𝜃2
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A common goal is to find an estimator with the
lowest mean squared error

If we restrict our search to unbiased estimators this means

Look for the minimum-variance estimator

Bias - Variance Decomposition

𝜎mse = var ෠𝜃 + bias෡𝜃
2
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Minimum Variance
The variance of an unbiased estimator cannot become arbitrarily small.

• It's bounded from below by the amount of "Information" the data
can provide about the model parameters

• lots of information → small variance and vice versa

• Known as the Cramér-Rao Bound 

var ෠𝜃 ≥
1

𝐼(𝜃)
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Fisher Information

The Information is measured by the average square gradient of the log 
likelihood function

• average sensitivity to parameter values across all possible 𝑥

• also called the "Fisher Information" of the model at 𝐼(𝜃)

var ෠𝜃 ≥
1

𝔼𝑥[(𝜕𝜃log𝑝(𝑥|𝜃))
2]
=

1

𝐼(𝜃)
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Fisher Information 

Exercise: For a Gaussian, 𝑥 ∼ 𝑝 𝑥 𝜇, 𝜎2 , calculate

𝐼 𝜇 = 𝔼𝑥 𝜕𝜇 log 𝑝 2 = −𝔼𝑥 𝜕
2𝜇 log 𝑝

...

=
1

𝜎2

The smaller the variance, the more information you have on the location
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Good Estimators
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Finding Estimators

We have empirically seen good estimation properties from sample 
statistics like the sample mean 𝑥 and the sample variance 𝑠2

But we pulled those out of a hat and only for the Gaussian case.

Where do they come from?

Need a robust and generalizable method to produce estimators.

What concept we introduced could be useful?
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Maximum Likelihood

An intuitive way to find a good point is to find the parameter መ𝜃 (𝑥)

that maximizes the probability to observe the data we got:

෠𝜃 𝑀𝐿𝐸(𝑥) is called the Maximum-Likelihood Estimator of 𝜃

෠𝜃 𝑀𝐿𝐸(𝑥) = argmax𝜃𝑝(𝑥|𝜃)
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Example

• Normal distribution:
• log ℒ 𝜇, 𝜎|(𝑥1, … , 𝑥𝑛) = ∑𝑖− log 𝜎 −

𝑥𝑖−𝜇
2

2𝜎2

(Exercise)

𝜕𝑙𝑜𝑔ℒ

𝜕ෝ𝜇
= 0→ 𝜇̂ =

1

𝑛
∑𝑥𝑖

𝑃 𝑥 𝜇, 𝜎 =
1

2𝜋𝜎
𝑒
−
1
2
𝑥−𝜇
𝜎

2
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MLE for Gaussian Model
Now we see the origin of the mean & variance estimators we used

They are the MLE estimators of the model parameters

ො𝜇MLE = 𝑥 =
1

𝑛
∑
𝑖
𝑥𝑖 ො𝜎MLE

2 = 𝑠2 =
1

𝑛
∑
𝑖
(𝑥𝑖 − 𝑥)2

𝑝(𝑥|𝜇, 𝜎2) = ς
𝑖
𝒩(𝑥𝑖|𝜇, 𝜎

2)
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Numerical Optimization
In general, a closed-form solution for መ𝜃 MLE is rarely available, but
it's always possible to fall back on numerical optimization

One option via gradient descent

መ𝜃 = 𝜃init

while not converged:

𝑔 = 𝛻𝜃𝑓(𝜃)
መ𝜃 ← መ𝜃 − 𝜆𝑔

𝛻𝜃nll

70



Python Example

MLE

z
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Properties of MLE
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Asymptotic Consistency & Normality

The MLE estimator is not only intuitive but can be shown to have a few 
nice properties.

• It's consistent: probability accumulates near the true value

• The sampling distribution of MLE approaches a normal distribution
asymptotically, i.e. for 𝑛 → ∞

𝑛( መ𝜃 − 𝜃0) →
𝑑 𝒩(0, var መ𝜃 )

= “converges in distribution”
73



We've seen this already for the Gaussian sample variance

• while the finite-sample መ𝜃 distributions may not be Gaussian
it will progressively be "normalized" (again, CLT)

Asymptotic Consistency & Normality
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Asymptotically Unbiased

Relatedly: MLE estimators are asymptotically unbiased

• Note: In general finite-sample MLE are biased

𝑛( መ𝜃 − 𝜃0) →
𝑑 𝒩(0, var መ𝜃 )

vanishing bias
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Asymptotically Unbiased
Sample variance is a biased MLE estimator, but 𝔼[𝑠2]moves towards 
the true value for large samples and the bias vanishes.

vanishing bias
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Asymptotically Efficient

MLE estimators saturate the Cramér-Rao bound:

• i.e. achieve the minimum possible variance of all unbiased estimators

𝑛( መ𝜃 − 𝜃0) →
𝑑 𝒩(0, var መ𝜃 )

𝑛( መ𝜃 − 𝜃0) →
𝑑 𝒩(0, 𝐼−1(𝜃))

Inverse Fisher Information

77



Fixing the 2nd Problem: MLE for our Example

• With MLE we get an 
estimated rate of 4.92

It is much closer to the truth!

78

And it is not biased!



Recap

• Point Estimation is about finding a single best parameter point to 
explain the observed data.

• We introduced a few key concepts of estimators in general:
• Consistency
• Bias
• Variance
• Cramér-Rao bound
• etc.

• Maximum-Likelihood is the most popular estimation method
• it has a number of desirable, asymptotic properties (consistency, min. 

variance,...)
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Day II
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Hypothesis Testing
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„goodness-of-fit“ tests

• Question: Does the model describe the 
data?

Example:
• Your model is the unit normal distribution
• Your observed value is -12.7
• The probability to get a value at least as 

extreme, is simply the CDF at -12.7 = 2.96 x 
10-37

→ very poor goodness-of-fit

82
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Equivalence

• Any goodness-of-fit test can be 
reduced to assessing whether samples 
come from the standard uniform 
distribution
• If you are interested to test whether 

samples xi stem from f(x), this is 
equivalent of asking whether samples yi = 
F(xi) come from the standard uniform 
U(0,1)

• (F is the cumulative of f)
• This can then also directly be interpreted 

as 1 - the p-value space
83



Test Statistic

• In order to work with more 
complex models (more than a 
simple observation), we need to 
define a test statistic

• For example, in our case, we 
could try to use the likelihood

• And then generate null trials to 
see how typical data looks like

84

Why using the likelihood is not a good idea: 
https://www.slac.stanford.edu/econf/C030908/papers/MOCT001.pdf



Chi2 approximation

• Let‘s look again at our likelihood expression:

𝐿 𝜆 = ෑ

𝑖

𝑝(𝑥𝑖|𝜆) =ෑ

𝑖

1

𝑥𝑖!
𝜆𝑥𝑖exp(−𝜆)

• A Poisson distribution can be approximated by a Gaussian with mean μ = 𝜆 and std. dev. σ
= 𝜆

𝐿 𝜆 ≈ ෑ

𝑖

1

2𝜋𝜆
𝑒
−
1
2
(𝑥𝑖−𝜆)2

𝜆

→A test statistic can be built out of this: TS 𝜆 = −2(𝑙𝑙ℎ 𝜆 − 𝑙𝑙ℎ( መ𝜆)) ≈ ∑𝑖
(𝑥𝑖−𝜆)2

𝜆

• Distribution of TS under the null hypothesis is analytically known! It follows a chi2 
distribution with df = n - #params.

• This is known as the Pearson chi2 test
• It is statistically more sound that using the bare likelihood
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Problems

• Order of the bins plays no 
role in the TS!

• (In the un-binned case, it is 
even worse )

• Many other test statistics 
have been proposed
• Kolmogorov-Smirnov (KS)
• Anderson-Darling (AD)
• Cramer-von Mises (CvM)
• Moran, Greenwood, …etc.
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The real issue here
Example:

• Generate data from a narrower Gaussian, i.e.  from a 
different model! 

→Chi2 G.o.f. is now 99.9999%

Hard Questions:

• Should this be considered a good g.o.f?

• The data is following the model so closely, isn’t this also 
very extreme / unlikely!

• Why would we define the rejection region on one tail 
only? The scenario here I would also reject by eye

• In fact, any (small) region of the same size in the 
distribution is equally (un)likely…so why should we reject 
anything in favour of anything else?

• What does our intuition tell us? Is there anything we 
implicitly assumed?
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Two hypotheses testing

• We can make the situation much better, if we can specify an alternate 
hypothesis H1

• So we can formulate a binary decision on which hypothesis to 
reject/accept

• We can formulate our decision based on comparing: 
• The sampling distributions of data under either candidate models
• with the actually realized data

→ See what kind of data the theories produce, and then compare with 
what we got from our experiment, then make a decision.
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Testing with Sampling Distributions

Simplest Case: consider two hypotheses of one-dimensional data

Decision we want to make: should we reject the "null hypothesis" ?

𝐻0: data originates from model 𝑝0(𝑥|𝜃0)

𝐻1: data originates from model 𝑝1(𝑥|𝜃1)

“the null hypothesis”

“the alternative hypothesis”
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Let's see the data that the hypotheses are predicting

Testing with Sampling Distributions

data
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Let's see the data that the hypotheses are predicting

Testing with Sampling Distributions

data

data according to 𝐻0
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Let's see the data that the hypotheses are predicting

Testing with Sampling Distributions

data

data according to 𝐻0

data according to 𝐻1
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Let's look at the data observed in the real world:

Testing with Sampling Distributions

data

data according to 𝐻0

data according to 𝐻1
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Let's look at the data observed in the real world

Testing with Sampling Distributions

data

data according to 𝐻0

observed data

data according to 𝐻1
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Question: 

if you had to formulate a rule to reject  (or not) 𝐻0 what would it be?

Testing with Sampling Distributions

data

data according to 𝐻0

observed data

data according to 𝐻1
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A reasonable answer:

• reject 𝐻0 if data is too far too the right (e.g. data > 𝑥0)

Testing with Sampling Distributions

data

data according to 𝐻0

observed data

range of data
for which we'll reject 

𝐻0

𝑥0

data according to 𝐻1
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A reasonable answer:

• reject 𝐻0 if data is too far too the right (e.g. data > 𝑥0)

• follow-up question: how do you choose 𝑥0?

Testing with Sampling Distributions

data

data according to 𝐻0

observed data

range of data
for which we'll reject 

𝐻0

𝑥0

data according to 𝐻1
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How good is this rule?

• look at the performance for each of possible scenarios

• i.e. probabilities of making the right decision

Testing with Sampling Distributions

data

data according to 𝐻0

observed data

range of data
for which we'll reject 

𝐻0

𝑥0

data according to 𝐻1
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If 𝐻0 is true:

Testing with Sampling Distributions

data

data according to 𝐻0 range of data
for which we'll reject 

𝐻0

𝑥0

𝑝(not reject H0|𝐻0) 𝑝(reject H0|𝐻0)
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If 𝐻1 is true:

𝑥0 data

data according to 𝐻1

range of data
for which we'll reject 

𝐻0

𝑝(not reject H0|𝐻1) 𝑝(reject H0|𝐻1)

Testing with Sampling Distributions
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Two Hypotheses & Two Actions

Type I  & Type II Error

𝐻0 is true

𝐻1 is true

reject 𝐻0not reject 𝐻0    

101



What are the favorable decisions?

Type I  & Type II Error

𝐻0 is true

𝐻1 is true

reject 𝐻0not reject 𝐻0    
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What are the favorable decisions?

Type I  & Type II Error

𝐻0 is true

𝐻1 is true

reject 𝐻0not reject 𝐻0    
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What are the unfavorable decisions?

Type I  & Type II Error

𝐻0 is true

𝐻1 is true

reject 𝐻0not reject 𝐻0    
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What are the bad decisions?

Type I  & Type II Error

𝐻0 is true

𝐻1 is true

reject 𝐻0not reject 𝐻0    

Type-I Error

Type-II Error

(false positive)

(false negative)
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The Performance of the test is fully characterized by two numbers

Type I  & Type II Error

𝐻0 is true

𝐻1 is true

reject 𝐻0not reject 𝐻0    

"the size" of the test
false positive rate

"the power" of the test
true positive rate
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Formalizing the Intuition
The size of the test is defined relative to the null hypothesis.

• probability to be in rejection region for 𝐻0

The power of the test is defined relative to a alternative hypothesis

• probability to be in rejection region given the alternative 

size: 𝑝(𝑥 ∈ 𝜔|𝐻0) = 𝑡0׬
∞
𝑝(𝑡|𝐻0)

power:  𝑝(𝑥 ∈ 𝜔|𝐻1) = 𝑡0׬
∞
𝑝(𝑡|𝐻1)
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p-values

• The probability of wrongly rejecting the null hypothesis for the 
observed value obtained from the data

• This is very similar to the size of the test
• The difference is:

• The size of the test is not a function of the observed data and is constant
• The p-value is a function of the data and can sometimes be significant (i.e. < than 

the size), or insignificant
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p-Values: lots of confusion
p-values do not have a good reputation so let's reiterate & understand

• p-units are a useful to report relationship of data with null hypothesis 
in a portable way independent of test statistic

• In fact, p-values are uniformly distributed under H0!

• test stat. value 𝑡(data) is harder to interpret w/o knowing details

• "The p-value" is at the observed data expressed in these units
𝑝(data) ≪ 𝛼: data is deep in rejection region
𝑝(data) ≫ 𝛼: data not close to rejection region
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p-Values: lots of confusion
p-values do not have a good reputation so it's reiterate & understand

p-values are not probability that 𝐻0 is false give the data 𝑝(¬𝐻0|𝑥)

(frequentist analysis doesn't put probabilities on hypotheses)

Frequent source of confusion by many (scientists & not)
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Two examples of low p-values
Experiment 1:
(low sensitivity)

Experiment 2:
(high sensitivity)

observed p-value: 0.03
observed power: 0.04 

observed p-value: 0.02
observed power: 0.5

p-value/power

For both experiments
the observed data has
low p-value (<0.05).

Should you reject
the null hypothesis?

p-value/power
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Two examples of low p-values
Experiment 1:
(low sensitivity)

Experiment 2:
(high sensitivity)

observed p-value: 0.03
observed power: 0.04 

observed p-value: 0.02
observed power: 0.5

p-value/power

Low-power test:

Maybe shouldn't reject
𝐻0 based on p-value alone?

p-value/power

High-power test.

low p-value is meaningful
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Back to our Example

• Null hypothesis: rate is constant
• Alternate hypothesis: Someone 

saw a truck arriving and workers 
entering the reactor at T = 70, and 
therefore the rate may have 
changed

• Let‘s test two fixed hypotheses:
• H0: Rate is constant at 5
• H1: Rate increased from 5 to 6 at T = 

70
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Test statistic

• We again have to choose a test 
statistic TS
• Let‘s use the total number of observed 

events (we expect this to be sensitive to 
de-/increase of the rate)

114

The new data you collected:

→We cannot reject the null Hypothesis at the 5% level



Neyman-Pearson Lemma

If we want to a null 𝑝(𝑥|𝜃0) vs an alternative 𝑝(𝑥|𝜃1)
we have a very compelling answer

The Neyman-Pearson Lemma:

is the optimal test statistic

all hypotheses 𝜃

null
𝜃0

alternative

𝜃1

𝑡(𝑥) =
𝑝(𝑥|𝜃1)

𝑝(𝑥|𝜃0)
The Likelihood Ratio:



Neyman-Pearson Lemma
With Likelihood Ratio as test statistic, we reject 𝐻0 when 𝑡(𝑥) indicates 
that data is too 𝐻1-like:  more likely to get 𝑥 under 𝐻1 than 𝐻0

𝑡(𝑥) =
𝑝(𝑥|𝜃1)

𝑝(𝑥|𝜃0)
> 𝑡𝛼

or equivalently

𝜆(𝑥) = −2log
𝑝(𝑥|𝜃0)

𝑝(𝑥|𝜃1)
> 𝜆𝛼



Visual Proof of NP-Lemma

𝑝(𝑥|𝐻1)

𝑝(𝑥|𝐻0)
= 𝑡𝛼

Start with the rejection region
as defined by Neyman-Pearson

LR > 𝑡𝛼

LR < 𝑡𝛼

data space

Thanks to Prof. Heinrich (TUM)



Consider a potential alternative region
and see how it's power compares

Visual Proof of NP-Lemma

data space
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A B

Add to rej. region: Remove from rej. region:

A

B

Focus on the areas that
are different between the two

Visual Proof of NP-Lemma

data space
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𝑝(𝐴|𝐻0) = 𝑝(𝐵|𝐻0)
test size should stay constant

A B

A

B 1

Visual Proof of NP-Lemma
Add to rej. region: Remove from rej. region:

data space
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𝑝(𝐴|𝐻0) = 𝑝(𝐵|𝐻0)

𝑝(𝐵|𝐻1) > 𝑡𝛼𝑝(𝐵|𝐻0)

test size should stay constant

removed region is over threshold 𝑘𝛼

A B

A

B 1

2

Visual Proof of NP-Lemma
Add to rej. region: Remove from rej. region:

data space
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𝑝(𝐴|𝐻0) = 𝑝(𝐵|𝐻0)

𝑝(𝐵|𝐻1) > 𝑡𝛼𝑝(𝐵|𝐻0)

𝑝(𝐴|𝐻1) < 𝑡𝛼𝑝(𝐴|𝐻0)

test size should stay constant

removed region is over threshold 𝑘𝛼

added region is under threshold 𝑘𝛼

A B

A

B 1

2

3

Visual Proof of NP-Lemma
Add to rej. region: Remove from rej. region:

data space
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𝑝(𝐴|𝐻1) < 𝑡𝛼𝑝(𝐴|𝐻0) = 𝑡𝛼𝑝(𝐵|𝐻0) < 𝑝(𝐵|𝐻1)

A B

new region has less power than NP-region!

𝑝(𝐴|𝐻0) = 𝑝(𝐵|𝐻0)
test size should stay constant

removed region is over threshold 𝑘𝛼

added region is under threshold 𝑘𝛼

A

B 1

2

3

13 2

Visual Proof of NP-Lemma

𝑝(𝐵|𝐻1) > 𝑡𝛼𝑝(𝐵|𝐻0)

𝑝(𝐴|𝐻1) < 𝑡𝛼𝑝(𝐴|𝐻0)

Add to rej. region: Remove from rej. region:

data space
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Using Likelihood Ratio

• Using Neymna-Pearson, i.e. the LHR as TS, we can reject the null 
at > 5%!

• P-value of 
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Nested Hypotheses

• In the example before we were comparing „simple“ hypotheses
• They were one fully specified model, no parameters to change

• In real life, we usually encounter complex hypotheses.
• In particular, so-called „Nested hypotheses“

• H0 is part of H1

• If we do not make assumptions on the rates we observe then our 
constant model is a strict subset of our model that introduces two 
separate rate →Nested hypotheses
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Wilk‘s theorem

• The LRT test statistic (−2∆𝐿𝐿𝐻) under the null hypothesis is 
distributed as the chi2 distribution!

• The degrees of freedom (df) is the difference in free parameters 
between H0 and H1 (In our case df=1)
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Fixing the 3rd Problem: Our Example

• P-value from trials: 1.59%
• P-value from chi2: 1.52 %
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Summary

• Hypothesis testing is one of the main workhorses in frequentist 
analysis

• idea is to check compatibility of data with (a set) of models
• done via looking at the data in a way that differentiates models through 

test statistics and comparing observed data (p-values)
to predicted distribution of data of the hypotheses 
• In general: need to use MC to find sampling distribution shape

• Likelihood-ratio-based tests often are the most powerful way to 
perform such a  test

• Neyman-Pearson: LRT is uniformly most powerful for simple hypos
• Asymptotically: we can derive exact sampling distributions
• Wilk's Theorem: distribution for null is 𝜒2
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Interval Estimation
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Recap: Point Estimators

• Remember:
• The principle of maximum likelihood gives us desirable estimators

→ Asymptotically efficient and unbiased

• For example in the case of a Gaussian:
• Sample mean as the MLE of the location 𝝁 of the distribution
• Sample standard deviation as the MLE of the scale 𝝈 of the distribution

• But often, we want to make some statements about “uncertainty”
• However, in the frequentist picture, there exists no concept of a probability 

distribution 𝑝 𝜃 !
• Instead, there is just one true value 𝜃𝑡𝑟𝑢𝑒

→How can we then build meaningful intervals?
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Neyman Construction
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Start with intervals in observed 𝑥

• We can build intervals of 𝑥 for fixed parameters 𝜃
• E.g. two-sided interval with 𝛼 = 0.1

𝑃(𝑥|𝜃)

𝑥

Allow (𝟏 − 𝜶)Reject (𝛼
2

) Reject (𝛼
2

)
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Band plot walk-through: Step 1

• We can construct such intervals in 𝑥 for any choice of 𝜃!
→ This is called the “Neyman” band plot

𝑥 133



Band plot walk-through: Step 2

• Now fix the observed value at your measured 𝑥

𝑥
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Band plot walk-through: Step 3

• Read of corresponding interval in 𝜃

𝑥
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Example: Poisson

• Let’s suppose we perform a 
counting experiment and we 
measure an outcome of 𝑘 = 7

• We know for a fixed 𝜆 the range of 
possible outcomes 𝑘
• → i.e., the probability distribution
• And we know how to construct 

intervals that contain 1 − 𝛼 of the 
probability mass
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Neyman Construction

• Poisson band plot:
• Construct the interval 

in 𝑘 for all possible 𝜆
Here we chose 𝛼 = 0.1

• Fix the random variable 
to our  measured value 
𝑘 = 7

• Read off the interval
𝜆 ∈ [3.3, 13.1] @ 90% 

C.L.
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Interpretation:
In repeated experiments, 
the CL interval contains the 
true value at least 𝟏 − 𝜶 of 
times

• Here: 100 Poisson 
experiments with 𝜆 = 6.2

• Slight overcoverage
• Actually only 25% 

measurements fall outside
• Typical problem for discrete 

distributions
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One-sided Intervals
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𝑥
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𝑥
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𝑥
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Example: Poisson

• Upper limit: maximum value 
of 𝜆 for which the true value is 
smaller at least 1 − 𝛼 of 
times

• For 𝑘 = 7: 𝜆 < 11.7 @ 90% 
C.L.

• Lower limit: analogous
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Empty intervals..?

• What happens if we observed x = -2?

C.L. intervals do not give you the probability that a certain parameter value is true!
144



Interpretation
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Interpretation of frequentist intervals is different than Bayesian intervals

What does 𝜃 < 𝜃up or 𝜃 ∈ [𝜃−, 𝜃+]mean here?

Bayesian: represents belief of what the value of the parameter is.

(i.e. "given the data & my priors I believe 𝜃 to be within [𝜃−, 𝜃+])

Frequentist: a summary of the obs. data "in the language of the model"

"my hypothesis tests deem 𝜃 ∈ [𝜃−, 𝜃+] compatible w/ observed data"

Meaning of Frequentist Intervals
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Randomness of Intervals

Intervals are random - same argument as for Bayesian Intervals:

• the computed intervals 𝐼𝜃
𝛼(𝑥) are "random objects"

because they are derived from random data 𝑥
• they may or may not include the true value of the data source
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Coverage

For Bayesian analysis coverage is usually not focus of attention.
• more about modeling your beliefs
• less focus on relation of your belief to a possible "true value"

But in in Frequentist analysis coverage is taken very seriously
• it is the main defining property of an interval estimation method
• partly due to focus is on repeated experimentation where

you may have get many intervals & long-run frequencies matter
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Often we do tests with test size of  𝛼 = 0.05.

→ i.e. probability of Type-I error (falsely rejecting 𝐻0) is 5%

Implies: if we use 𝛼 = 0.05 in our construction

→ the probability of the intervals to cover the true value is 95% 
referred to as "95% confidence level intervals" (95% C.L.)

Coverage for Freqentist Intervals
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95% Confidence Level Interval: what exactly are we confident about?

• Not a statement of confidence what the true value of 𝜃 is

• Rather confidence in whether intervals we construct are covering

Compare to "Credible Intervals" (C.I.) (Bayesian)

• Actually is a statement about your belief regarding the true value of  𝜃

Confidence in what?
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Bayesian Intervals (credible intervals):

"Given the data I believe there is a  95% probability that 𝜃 ∈ [𝜃−, 𝜃+]"
• Coverage is usually not analyzed

Frequentist Intervals (confidence intervals):

"Given the data all 𝜃 ∈ [𝜃−, 𝜃+] are not rejected by a test of size 0.05"

• Coverage is 95% by definition: Intervals under repeated experiments
will include true value of 𝜃 95% of the time

Correct Statements for Intervals
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Recap

• Neyman Band Construction
• Allows us to draw intervals in 𝜃

containing the true value at 
least (1 − 𝛼) times in repeated 
trials (= frequency)

• Construction:
• For fixed values of 𝜃 construct 

intervals in 𝑥
• Fix 𝑥 at observed value
• Read off intervals in 𝜃

𝑥

Data Space (observable)
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e 
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)
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Beyond Simple Models
…again
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What if I have more data…?

• Let’s say I measure n 
examples from a Gaussian 
distribution {𝑥1, 𝑥2, … , 𝑥𝑛}

• I get 𝑛 different intervals 
𝐼1, 𝐼2, … , 𝐼𝑛

• But what you really want is  
combined answer
• We’ll encounter a “natural” way 

how such multiple data can be 
combined in the Bayesian case 
next year (“update of 
knowledge”)

𝑥

Data Space (observable)

Ab
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Sp
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e 
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ar
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er

)

𝑥1 𝑥2𝑥3 𝑥4𝑥5
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Alternative 1

• We could combine our data into 
a single value:
• For the Gaussian case, maybe a 

good choice would be the sample 
mean ҧ𝑥 = 1

𝑛
∑𝑖 𝑥𝑖

• This is still an observable in the 
data space ☺

• Follow the exact same procedure 
to construct corresponding 
Neyman Bands ☺

• We need to define a good 
quantity by hand 

ҧ𝑥

Data Space (observable)
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Alternative 2

• In the discussion of point estimators, we found that 
the maximum likelihood estimator (MLE) is a 
desirable way how to summarize our observations

• In the discussion of hypothesis tests, we found that 
likelihood-ratio tests (LRT) have several desirable 
properties (e.g., Neyman-Pearson Lemma says LRT is 
most powerful TS)

•→Can we use the likelihood also for intervals..?
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LRT as TS for Neyman Band

• LRT test statistic:

• Instead of drawing intervals in 𝑥
for every 𝜃 we construct 
intervals in 𝑡𝜃 for every 𝜃

𝜆𝜃(𝑥)

𝜃
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What do the Rejection Regions look like?

• When taking the LRT ratio test, the null hypothesis distribution is 
always the same, regardless of 𝜃:
→ the 𝜒2 distribution (Wilk's Theorem)

Intervals in 𝑥 Intervals in 𝜆𝜃(𝑥)
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What do the Rejection Regions look like?

• If null distribution is the same, the 
rejection region is the same for all 
parameter values.

• And we know from hypothesis 
testing already that the 
distribution follows a 𝜒2

𝜆𝜃(𝑥)

𝜃
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How does the observed look like?

• Now we switched from 𝑥 to 𝜆𝜃 𝑥
• This itself is a function of 𝜃!

• From Wald/Wilk we know its 
asymptotic form:

which is a parabola around the MLE

෠𝜃
𝜃
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Putting it together
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Equivalence

• Defining a rejection region in test statistic space induces a 
corresponding one in maximum likelihood  space

reject

𝜆𝜃(𝑥)
Test Statistic Space

reject

መ𝜃

𝜃𝜃

MLE Space
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The rejected parameter values are the parameters for which
the (profile) likelihood ratio is sufficiently worse than the MLE likelihood

Constructing the Interval

𝜃

𝜃
̂

reject

𝜆𝜃(𝑥)

𝜃−

𝜃+

𝜃
̂

𝜃

𝜃̂

re
je

ct

𝜆
𝜃
(𝑥
)

𝜃
−

𝜃
+𝜃̂

Flip
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Common Interval (with 68% coverage)
achieved for the following rejection region

→ Based on a chi2 with d.o.f.=1 (asymptotic)

Standard 1𝜎 intervals 

𝜃

෠𝜃

re
je

ct

𝜆𝜃(𝑥)

𝜃
−

𝜃
+

𝜃̂

𝜆𝜃(𝑥) = −2(LL(𝜃lim) − LL( ෠𝜃)) = 1

NLL(𝜃lim) − NLL( ෠𝜃) =
1

2 1.0

Cowan, p. 135 164



Putting it to work
• Let’s suppose we draw 100 

samples from a normal 
distribution with 𝜇=1 and 𝜎=2

• Likelihood is obtained from 
the joint probability 

ℒ =ෑ

𝑖

𝑝(𝑥𝑖|𝜇, 𝜎)

• Let’s fix 𝜎 = 2 and look at 𝜇

165



Intervals

• Construct the CL intervals
• Here I chose 1 sigma (68%), 

90% and 2 sigma (95%)

• The 1 sigma interval is 
around:
𝜇 = 0.95 ± 0.2 @ 68% 𝐶. 𝐿.

• Also, remember CLT: from 
𝑛 measurements with 𝜎
= 2 we expect to get an 
error on  𝜇 of 𝜎

𝑛
→Checks 

out!!
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What about sigma?

• Follow same procedure
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Both parameters!
• We can play the same 

game, but vary both 
parameters!!

• Need to use now 𝜒2
distribution with d.o.f. = 2 
for critical values!
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Profile LLH
• Let’s say we do not know the 

true parameter 𝜇 nor 𝜎
• So we can follow the 

procedure from above
• But maybe we’re only 

interested in 𝜇 (or 𝜎)

• We can follow a procedure 
called the profile likelihood
• It sets all other parameters

to their MLE as a function of 
the parameter of interest
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Fixing the 4th Problem 

• Finally, we can now 
quote our estimate with 
a correct interval:

• Rate = 4.92 + 0.224 –
0.218 @ 68% C.L.
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Summary Intervals
• Neyman Construction is about repeated Hypothesis Tests scanning the 

parameter space of the model
• Confidence Interval: all points that are not rejected by a test (e.g. p=0.05) are 

inside the interval
• well defined "coverage" properties: 

• If data comes from 𝜃0 the interval will include 𝜃0 95% of the time
• does not mean: 95% belief that 𝜃0 in any given interval

• Using the LRT as a test statistic
• Provides a general framework for constructing intervals
• Asymptotics are known (based on Wald / Wilk's)
• Intervals = Contours of the log-likelihood function

• Care needed at boundaries of parameter space
• A principled test (i.e. likelihood-ratio test) solves a number of issues from more 

ad-hoc test strategies: flip-flopping, empty intervals
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Day 3
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Bayesian Inference
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Short recap

• We discussed parameter 
inference in the Frequentist 
case:
• Point estimators

• Principle of Maximum Likelihood

• Hypothesis Testing
• Likelihood ratio tests as most 

powerful test statistic

• Confidence Level Intervals
• Neyman Band Construction
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Bayesian Probability

• Let‘s make the stark assumption, that we can upgrade 𝜃 to be a 
random variable!

• This means there exists a distribution 𝑝(𝜃)!
• In the Frequentist world, there is no such assumption
• This is the price we have to pay for Bayesian Inference

• Conceptually very different, and once we accept this, 
• It means there also exists a joint distribution 𝑝(𝑥, 𝜃)
• And that we encode our degree of believe about the value of 𝜃 in the form of the

distribution 𝑝 𝜃
• Before we look at the data x we call it the prior distributuion 𝑝 𝜃
• After inference (i.e. consulting the data x), we call it the posterior 𝑝 𝜃
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Bayes’ Theorem

Starting from the law of conditional probability:

since 𝑝 𝐴 ∩ 𝐵 ≡ 𝑝(𝐵 ∩ 𝐴),
we immediately get Bayes’ theorem:

𝑝 𝐴 𝐵 =
𝑝 𝐵 𝐴 𝑝(𝐴)

𝑝(𝐵)

𝑃(𝐴)

𝑃(𝐵)

𝑃(𝐴 ∩ 𝐵)

𝑝 𝐴 𝐵 =
𝑝(𝐴 ∩ 𝐵)

𝑝(𝐵)
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In the context of Models and Data

• A = our abstract model 𝑀 with 
parameters 𝜃

• B = our data 𝑥

𝑝 𝜃 𝑥,𝑀 =
𝑝 𝑥 𝜃,𝑀 𝑝(𝜃|𝑀)

𝑝(𝑥|𝑀)

Posterior

Likelihood

Prior

Evidence (Marginal Likelihood)
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Law of total Probability
• What is the “Evidence”: 𝑝(𝑥|𝑀)?

• It is the probability of the data 𝑥 under the Model 𝑀
• We’ll discuss later what its interpretation is and how we can make use of 

it (→Model comparison)

• For now, we can use the “law of total probability”

𝑃 𝐵 = න𝑃 𝐴, 𝐵 𝑑𝐴

to express it as 𝑝 𝑥 = 𝑝׬ 𝑥, 𝜃 𝑑𝜃 = 𝑝׬ 𝑥 𝜃 𝑝 𝜃 𝑑𝜃

𝑝 𝜃 𝑥,𝑀 =
𝑝 𝑥 𝜃,𝑀 𝑝(𝜃|𝑀)

𝑝(𝑥|𝑀)
=

𝑝 𝑥 𝜃,𝑀 𝑝(𝜃|𝑀)

𝑝׬ 𝑥 𝜃,𝑀 𝑝 𝜃 𝑀 𝑑𝜃
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Example: Fair coin?

We can employ Bayes’ theorem for a 
parameter inference problem
Let’s study the example of tossing a coin
→ Probability of one outcome:

• Heads: 𝑝 (e.g. 0.5)
• Tails: 𝑞 = 1 – 𝑝 (e.g. also 0.5)

• Multiple coin tosses:
→ Binomial Distribution (next slide)

No country for old men
(https://www.youtube.com/watch?v=OLCL6OYbSTw)

179

https://www.youtube.com/watch?v=OLCL6OYbSTw


Binomial Distribution

• 𝑃 𝑘 𝑁, 𝑝 =
𝑁!

𝑘! 𝑁−𝑘 !
𝑝𝑘𝑞𝑁−𝑘 = 𝑁

𝑘
𝑝𝑘(1 − 𝑝)𝑁−𝑘

• 𝑝: probability of a success 
• 𝑁: number of independent trials
• 𝑘: number of successes
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Putting Bayes to work

• Now 𝑝 𝑘 𝑝, 𝑁 we know, it is the binomial probability distribution 
𝑁
𝑘
𝑝𝑘(1 − 𝑝)𝑁−𝑘

• 𝑝(𝑝) we have to choose! Let’s be very conservative and assume a 
uniform distribution between 0 and 1 (→ 𝑝(𝑝) = 1 for p in [0,1])

• The marginal p(k) can be calculated from the integral over p

𝑝 𝑝 𝑘, 𝑁 =
𝑝 𝑘 𝑝, 𝑁 𝑝(𝑝)

𝑝(𝑘)
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Integral is a standard beta function:

𝛽 𝑘 + 1,𝑁 − 𝑘 + 1 = න
0

1

𝑝𝑘(1 − 𝑝)𝑁−𝑘 𝑑𝑝 =
𝑘! 𝑁 − 𝑘 !

𝑁 + 1 !

Giving the posterior:

𝑝 𝑝 𝑘, 𝑁 =
𝑁 + 1 !

𝑘! 𝑁 − 𝑘 !
𝑝𝑘(1 − 𝑝)𝑁−𝑘

𝑝 𝑝 𝑘,𝑁 =
𝑝𝑘(1 − 𝑝)𝑁−𝑘

0׬
1
𝑝𝑘(1 − 𝑝)𝑁−𝑘 𝑑𝑝
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Posterior

• The posterior looks very much like the binomial distribution we 
started out from
• Except, it is now a function of 𝒑 instead of 𝒌! It’s a beta distribution
• And has an additional factor (𝑁 + 1)

• This is now a properly normalized pdf

• Let’s analyze the posterior:
• The mode of the posterior lies at 𝑝∗ = 𝑘

𝑁
→ This is the same as we would get from maximum likelihood
(which is expected as we started from a flat prior)

𝑝 𝑝 𝑘, 𝑁 =
𝑁 + 1 !

𝑘! 𝑁 − 𝑘 !
𝑝𝑘(1 − 𝑝)𝑁−𝑘
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First Moments of Posterior

• Expectation Value:

𝐸 𝑝 = න
0

1

𝑝𝑝 𝑝 𝑁, 𝑘 𝑑𝑝 = න
0

1 𝑁 + 1 !

𝑘! 𝑁 − 𝑘 !
𝑝𝑘+1(1 − 𝑝)𝑁−𝑘𝑑𝑝 = ⋯

… 𝐸 𝑝 =
𝑘 + 1

𝑁 + 2
Variance:

𝑉 𝑝 =
(𝑘 + 1)(𝑁 − 𝑘 + 1)

𝑁 + 2 2(𝑁 + 3)

→These are also valid for 𝑁 = 𝑘 = 0, in which case we get the 𝐸 =
1

2
and 𝑉 =

1

12

(using properties of the beta function)

✓ (these are the mean and variance of a standard uniform = our prior)
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Visualization of Posterior

(from D. S. Sivia – Data Analysis, A Bayesian Tutorial)
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Priors
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Importance of priors

• We had to choose the prior 𝑝(𝑝)
ourselves and tried to be “unbiased” 
by taking a uniform distribution

• Another fair assumption would be 
something centered around 0.5 with 
some tails towards 0 and 1, because 
we could start with the assumption 
that coins are usually quite fair

• Or we could choose another extreme 
that is heavily biased towards 0 and 1
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Effect of priors

• If we only analyze a few coin tosses, the effect of the prior is large
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But when 
analyzing a larger 
dataset, the effect 
of the prior 
diminishes
→ the data is more 
informative than 
the prior, and prior 
choices don’t 
matter as much 
anymore
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Update of knowledge

• What if instead of analyzing all data at once, we successively 
performed one coin toss after the other, and use the posterior 
from one as the prior of the next?

Prior
Update with 

all data 
(likelihood)

Posterior

Prior 1
Update with 
partial data 
(likelihood)

Posterior 1
= Prior 2

Update with 
remaining 

data 
(likelihood)

Posterior 2
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Coin toss update of knowledge

Instead of Analyzing 𝑁 tosses with successes 𝑘, we split it up into 
𝑁1 tosses with successes 𝑘1 and 𝑁2 with 𝑘2
(where  𝑁 = 𝑁1 +𝑁2 and 𝑘 = 𝑘1+ 𝑘2)

We know the result of analyzing the first batch already:

𝑝 𝑝 𝑘1, 𝑁1 =
𝑁1 + 1 !

𝑘1! 𝑁1 − 𝑘1 !
𝑝𝑘1(1 − 𝑝)𝑁1

−𝑘
1
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Plugging everything in

→ This is exactly the same as analyzing the whole dataset at once!

𝑝 𝑝 𝑘2, 𝑁2 =
𝑝 𝑘2 𝑝,𝑁2 𝑝(𝑝)

𝑝(𝑘2)
=

𝑝 𝑘2 𝑝,𝑁2 𝑝(𝑝)

𝑝׬ 𝑘2 𝑝,𝑁2 𝑝(𝑝) 𝑑𝑝

= 𝑝𝑘2(1−𝑝)𝑁2
−𝑘

2𝑝𝑘1(1−𝑝)𝑁1
−𝑘

1

׬ 𝑝𝑘2(1−𝑝)𝑁2
−𝑘

2𝑝𝑘1(1−𝑝)𝑁1
−𝑘

1𝑑𝑝
= 𝑝𝑘1+𝑘2(1−𝑝)𝑁1

+𝑁
2
−𝑘

1
−𝑘

2

׬ 𝑝𝑘1+𝑘2(1−𝑝)𝑁1
+𝑁

2
−𝑘

1
−𝑘

2𝑑𝑝
= 𝑝𝑘(1−𝑝)𝑁−𝑘

׬ 𝑝𝑘(1−𝑝)𝑁−𝑘𝑑𝑝
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Conjugate Priors

In general, if we use a beta distribution as the prior we get out 
another beta distribution as the posterior
→ The beta distribution is a conjugate prior to the Binomial 
distribution

Other examples:
• Gamma distribution is the conjugate prior for a Poisson Likelihood
• Dirichlet distribution is the conjugate prior for a Multinomial 

Likelihood
• Normal* distribution is the conjugate prior for a Normal Likelihood 

(*) under certain assumptions → For more, see: https://en.wikipedia.org/wiki/Conjugate_prior194

https://en.wikipedia.org/wiki/Conjugate_prior


Jeffreys Prior

• The Jeffreys prior is intended to be a non-informative prior distribution
• It is constructed from the Fisher information 𝐼 (→ see Lecture 13)

• Jeffreys prior 𝑝 𝜃 ∼ det 𝐼 𝜃 = 𝔼 𝜕𝜃 log 𝑝(𝑥|𝜃) 2

• Example for our Binomial:
• 𝐼 𝑝 = −𝐸 𝜕2𝑝𝑙𝑜𝑔𝑝 =

𝑁𝑝

𝑝2
+

𝑁−𝑁𝑝

1−𝑝 2 =
𝑁

𝑝 1−𝑝
~𝑝−1 1 − 𝑝 −1

→𝑃𝐽𝑒𝑓𝑓𝑟𝑒𝑦𝑠 𝑝 = 𝐼 𝑝 ~ 𝑝−1/2 1 − 𝑝 −1/2

Which is a beta distribution 𝛽(1
2
,
1

2
) 𝛽(

1

2
,
1

2
)
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Invariance

• Jeffreys prior is constructed in such a way that it is invariant under 
reparameterizations 𝜃 → 𝜉 since

• 𝑝 𝜉 = 𝑝 𝜃
𝜕𝜃

𝜕𝜉
∼ det 𝐼 𝜃

𝜕𝜃

𝜕𝜉
= 𝔼 𝜕𝜃 log 𝑝 𝑥 𝜃 2 𝜕𝜃

𝜕𝜉
2

= 𝔼 𝜕𝜉 log 𝑝 𝑥 𝜃 2 = det 𝐼 𝜉
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Example 2: Gaussian mean

• Assume we have data 𝑥 distributed according to a normal 
distribution

𝒩 𝑥 𝜇, 𝜎 =
1

2𝜋𝜎
𝑒
−
1
2
𝑥−𝜇
𝜎

2

• We also assume that 𝜎 is fixed (= known)

Let’s see what we can learn about 𝜇 from a single measurement 𝑥!
• We will use a flat prior for 𝜇 that extends well beyond the 

measured value 𝑥
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𝑝 𝜇 𝑥, 𝜎 =
𝑝 𝑥 𝜇, 𝜎 𝑝(𝜇)

׬ 𝑝 𝑥 𝜇, 𝜎 𝑝 𝜇 𝑑𝜇

𝑝׬ 𝑥 𝜇, 𝜎 𝑝 𝜇 𝑑𝜇 = 𝜇׬
𝑚𝑖𝑛

𝜇
𝑚𝑎𝑥 1

2𝜋𝜎
𝑒
−
1

2

𝑥−𝜇

𝜎

2
1

𝜇
𝑚𝑎𝑥

−𝜇
𝑚𝑖𝑛

dμ

≈
1

𝜇
𝑚𝑎𝑥

−𝜇
𝑚𝑖𝑛

∞−׬
∞ 1

2𝜋𝜎
𝑒
−
1

2

𝑥−𝜇

𝜎

2

dμ =
1

𝜇
𝑚𝑎𝑥

−𝜇
𝑚𝑖𝑛

= 𝑝(𝜇)

→ 𝑝 𝜇 𝑥, 𝜎 =
𝑝 𝑥 𝜇, 𝜎 𝑝(𝜇)

𝑝(𝜇)
= 𝑝 𝑥 𝜇, 𝜎 which is the same Normal 

distribution, but as a function of 𝜇 instead of 𝑥
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Multiple observations

Let’s go back to our standard example of measuring 𝑛 independent 
and identically distributed (𝑖. 𝑖. 𝑑.) samples from a normal 
distribution

Using the “update of knowledge” procedure

𝑝2 𝜇 𝑥2 =
𝑝 𝑥2 𝜇, 𝜎2 𝑝1(𝜇)

׬ 𝑝 𝑥2 𝜇, 𝜎2 𝑝1 𝜇 𝑑𝜇

𝑝1 𝜇 =
1

2𝜋𝜎1
𝑒
−
1
2
𝑥
1
−𝜇
𝜎
1

2

Prior (= Posterior from first measurement):

𝑝 𝑥2|𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒
−
1
2
𝑥
2
−𝜇
𝜎
2

2

Likelihood for second measurement:
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… some tedious calculus later … (by completion of squares)

𝑝 𝜇 𝑥1, 𝑥2, 𝜎1, 𝜎2 =
1

2𝜋𝜎𝐴
𝑒
−
1
2
𝑥𝐴−𝜇
𝜎𝐴

2

For 𝑛 independent measurements 𝑥𝑖 this generalizes to a Gaussian 
with mean 

∑ 𝑥
𝑖
/𝜎

𝑖
2

∑ 1/𝜎𝑖
2 and variance (∑1/𝜎𝑖2)−1

With the weighted average 𝑥𝐴 =
𝑥
1
/𝜎

1
2+𝑥

2
/𝜎

2
2

1/𝜎
1
2+1/𝜎

2
2

And 1
𝜎
𝐴
2 =

1

𝜎
1
2 + 1

𝜎
2
2
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Combining Measurements

• When combining measurements
• The weight of individual data is proportional to the inverse of the square of 

the resolution
→ you can win quickly by improving resolution!
→ you can also win by adding more data, but it does not scale as fast 
(~ 𝑛)

• Let’s assume all 𝜎𝑖 = 𝜎 are the same, meeting the CLT again

→𝑥𝐴 =
∑ 𝑥𝑖/𝜎

2

∑ 1/𝜎2 =
∑ 𝑥𝑖
∑ 1

=
1

𝑛
∑𝑥𝑖 = ҧ𝑥

→𝜎𝐴
2 = (∑1/𝜎2)−1=

𝜎2

𝑛
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Summary of posterior

• We can construct “credible intervals” from our posterior to 
summarize it
• Calculate intervals in 𝜇 that contain a desired amount of probability,
For instance the central or smallest intervals:

These Bayesian credible intervals are often abbreviated as “C.I.”, as 
opposed to the Frequentist confidence level intervals “C.L.”
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Credible vs. C.L. Regions
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https://en.wikipedia.org/wiki/Confidence_interval204
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Why are C.I. not the same as C.L.??

Pathological Example: Let’s suppose you construct intervals for 
the width 𝜎 of a Gaussian centered at 0:

Interval = ቊ
ℝ

+
𝑖𝑓 𝑥 ≥ 0

∅ 𝑖𝑓 𝑥 < 0

The resulting intervals will have a perfect coverage of 𝛼 = 50%

→The true value of 𝜎 will be contained in exactly 50% of cases!
Yet, the intervals are either empty or all real, positive numbers…
C.L. intervals cannot be interpreted the same way as credible 
intervals!
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Differences
• The intervals themselves differ

• Examples can be constructed where they are wildly 
different

• Example on the right taken from Morey et al. “The 
Fallacy of Placing Confidence in Confidence 
Intervals”

• Their interpretation is different:
• C.L. only make sense in the context of long running 

sequences of trials, and there is one true parameter 
value

• C.I. express the degree of belief as a probability 
distribution over possible values of the parameter

• In the limit of large data (asymptotically), and 
under some assumptions, C.I.s and C.L.s 
converge (Bernstein–von Mises theorem)

C.L.

C.I.
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Summary so far

• Bayes Theorem offers a way to turn statements about the outcome of 
an experiment given its parameters into a statement about the 
parameters given an outcome
• This needs the likelihood (just as in the frequentist case)
• But also a choice of prior distribution for the parameters!
• Some special priors:

• Conjugate priors for a given likelihood: Posterior will have same form
• Jeffreys prior: invariant under reparatemetrization, therefor regarded as “unbiased”

• The result is summarized in the Posterior distribution
• This is the Prior updated with the knowledge from our data
• Using the posterior of one measurement as the prior to the next offers a way to 

continuously “update our knowledge”
• Credible Intervals can be derived from the posterior
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Beyond Simple Models
…again!!
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Gaussian Noise revisited

• Before, we considered a Gaussian 
process with fixed variance

• What if we do not know the 
variance, but still want to infer 𝜇?
• The likelihood is now a function of 

both, 𝜎 and 𝜇

• Still, we can use Bayes’ theorem in 
the same way

𝑝 {𝑥} 𝜇, 𝜎 =ෑ

𝑖

1

2𝜋𝜎
𝑒
−
1
2
𝑥
𝑖
−𝜇
𝜎

2
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Prior

The prior now has to be a joint probability function over 𝜎 and 𝜇
i.e. of the form 𝑝 𝜇, 𝜎

We can again choose a “flat” prior

𝑝 𝜇, 𝜎 = ቊ
𝑐𝑜𝑛𝑠𝑡. 𝑖𝑓 𝜎 > 0
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

Let’s assume the boundaries 𝜇𝑚𝑖𝑛, 𝜇𝑚𝑎𝑥 and 𝜎𝑚𝑎𝑥 are far enough 
away
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Posterior

Then we know the posterior is proportional to:

𝑝 𝜇, 𝜎 𝑥 ~𝑝 𝑥 𝜇, 𝜎 𝑝 𝜇, 𝜎

~ෑ

𝑖

1

2𝜋𝜎
𝑒
−
1
2
𝑥𝑖−𝜇
𝜎

2

Of course this posterior is now also a joint probability over 𝜎 and 𝜇!
But we may not be interested in 𝜎…
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Marginal distribution

• We can integrate over an “unwanted” parameter
• 𝑝 𝜇 𝑥 = 𝑝׬ 𝜇, 𝜎 𝑥 𝑑𝜎

• (and vice versa we could integrate over 𝜇 to have 
the marginal posterior of 𝜎)

Note that what we did last lecture was to calculate 
𝑝 𝜇 𝑥 , 𝜎 , which is also a posterior for 𝜇, but it is 
conditional on a particular choice of 𝜎
→We speak of the “marginal” distribution if 

nuisance parameters take into account our prior 
ignorance
→We speak of the “conditional” distribution if 

nuisance parameters are set to fixed values
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Marginal Posterior

𝑝 𝜇 𝑥 ~නෑ

𝑖

1

2𝜋𝜎
𝑒
−
1
2
𝑥
𝑖
−𝜇
𝜎

2

𝑑𝜎

= න( 2𝜋𝜎)−𝑁𝑒−
1
2𝜎2 ∑𝑖 𝑥𝑖−𝜇

2

𝑑𝜎

We’ll make a substitution 𝑡 = 1

𝜎

~න𝑡𝑁−2𝑒−
𝑡2

2
∑𝑖 𝑥𝑖−𝜇

2

𝑑𝑡
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න𝑡𝑁−2𝑒−
𝑡2

2
∑𝑖 𝑥𝑖−𝜇

2

𝑑𝑡

Using another substitution of 𝜏 = 𝑡 ∑𝑖 𝑥𝑖 − 𝜇 2 makes the integral 
independent of 𝜇, so it can be absorbed into the proportionality.
This reduces our posterior to:

𝑝 𝜇 𝑥 ~ ෍

𝑖

𝑥𝑖 − 𝜇 2

−(𝑁−1)/2
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Properties of Posterior

We can find the MAP (maximum a posteriori probability estimate) 
easily by finding the root of the derivative (of the log)

ቤ
𝑑𝑙𝑜𝑔𝑝

𝑑𝜇 𝜇0
= 0

→𝜇0 =
1

𝑁
∑𝑖 𝑥𝑖 = ҧ𝑥

Which is still our usual sample mean!
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Properties of Posterior

What about the shape of the posterior?
We can get an idea about the shape close to the MAP by doing a Taylor 
expansion:

𝑙𝑜𝑔𝑝 𝜇 = 𝑙𝑜𝑔𝑝 𝜇0 + ቤ
𝑑𝑙𝑜𝑔𝑝

𝑑𝜇 𝜇0
𝜇 − 𝜇0 +

1

2
ቤ

𝑑2𝑙𝑜𝑔𝑝

𝑑𝜇2 𝜇0
𝜇 − 𝜇0

2 +⋯

• The first term is constant → doesn’t tell us anything about the shape
• Second term is 0 because we are at the maximum
• The quadratic term is the dominant one for the shape
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Properties of Posterior

So this leads us to:

𝑝 𝜇 ≈ 𝑐𝑜𝑛𝑠𝑡 × 𝑒
(
1
2

ቚ
𝑑2𝑙𝑜𝑔𝑝
𝑑𝜇2 𝜇0

𝜇−𝜇0
2)

Which has the form of a Gaussian!!

𝒩 𝑥 𝜇, 𝜎 =
1

2𝜋𝜎
𝑒
−
1
2
𝑥−𝜇
𝜎

2

→This means we have approximated our posterior with a Gaussian with:
• mean 𝜇0
• width 1/ −

𝑑2𝑙𝑜𝑔𝑝

𝑑𝜇2
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Properties of Posterior

• Plugging in the numbers then leaves us with:

𝜇 = ҧ𝑥 ±
𝑆

𝑛

where 𝑆 = 1

𝑛−1
∑𝑖 𝑥𝑖 − ҧ𝑥 2 is simply the sample standard deviation

The above has the same form as the case with fixed 𝜎, except that 𝜎
has been replaced by an estimate from the data!
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Bayesian Model Selection
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Model selection

• So far, we talked about parameter estimation
• Sometimes, however, we’re more interested to test and compare 

different models

• Example:
Are these points better described by:
- Model A: 𝑦 = 0
- Model B: 𝑦 = 𝑎
- Model C: 𝑦 = 𝑎𝑥 + 𝑏
- Model D: …

?

220



Goodness of fit

• We could be tempted to base our decision 
simply on how well the model can explain 
the data
• For example quantifying the residuals, i.e. how 

close does the model get to the data points

The problem with that: 
• An 𝑛-dimensional polynomial, for 

instance, will be able to perfectly describe 
the data

• But does that make it a better model…?

Model with perfect fit to data
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Using Bayes

• We can instead compare the two posteriors
• Probability of Model 𝐴 given the data 𝐷: 𝑝 𝐴 𝐷
• Probability of Model 𝐵 given the data 𝐷: 𝑝(𝐵|𝐷)

• By building the posterior ratio =  
𝑝 𝐴 𝐷
𝑝 𝐵 𝐷

we would prefer theory A if the posterior ratio is ≫ 1
(or theory B if it is much smaller then 1)
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Using Bayes

• Pluggin in Bayes’ theorem, this can be expressed as:

𝑝 𝐴 𝐷

𝑝 𝐵 𝐷
=
𝑝(𝐷|𝐴)

𝑝(𝐷|𝐵)

𝑝(𝐴)

𝑝(𝐵)

(since 𝑝(𝐷) cancels out in the ratio)

𝑝(𝐴)

𝑝(𝐵)
is the ratio of the priors for the two models

To be fair it could be set to 1
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Models with parameters

• What if model 𝐵 contains an unknown parameter 𝜆?
• We can marginalize over it:

𝑝 𝐷 𝐵 = න𝑝 𝐷, 𝜆 𝐵 𝑑𝜆 = න𝑝 𝐷 𝜆, 𝐵 𝑝(𝜆|𝐵)𝑑𝜆

Our usual likelihood under Model B The prior for 𝜆 under model B
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Example

• Let’s use a uniform prior for 𝜆:
• 𝑝 𝜆|𝐵 =

1

𝜆
𝑚𝑎𝑥

−𝜆
𝑚𝑖𝑛

→ 𝑝 𝐷 𝐵 =
1

𝜆
𝑚𝑎𝑥

−𝜆
𝑚𝑖𝑛

𝜆׬
𝑚𝑖𝑛

𝜆
𝑚𝑎𝑥 𝑝 𝐷 𝜆, 𝐵 𝑑𝜆

• Let’s also assume that the 
likelihood is normal around the 
MLE 𝜆0 (i.e. parabolic in LLH) with a 
width (uncertainty) of δ𝜆

• 𝑝 𝐷 𝜆, 𝐵 = 𝑝 𝐷 𝜆0, 𝐵 × 𝑒−
𝜆−𝜆

0

2

2δ𝜆2
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•→ 𝑝 𝐷 𝐵 =
1

𝜆
𝑚𝑎𝑥

−𝜆
𝑚𝑖𝑛

𝜆׬
𝑚𝑖𝑛

𝜆𝑚𝑎𝑥 𝑝 𝐷 𝜆0, 𝐵 × 𝑒−
𝜆−𝜆

0

2

2δ𝜆2 𝑑𝜆

=
𝑝 𝐷 𝜆0, 𝐵

𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛
×න

𝜆
𝑚𝑖𝑛

𝜆𝑚𝑎𝑥

𝑒
−
𝜆−𝜆0

2

2δ𝜆2 𝑑𝜆

=
𝑝 𝐷 𝜆0, 𝐵 × δ𝜆 2𝜋

𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛
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Posterior ratio

𝑝 𝐴 𝐷

𝑝 𝐵 𝐷
=
𝑝(𝐴)

𝑝 𝐵
×

𝑝(𝐷|𝐴)

𝑝(𝐷|𝜆0, 𝐵)
×
𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛

δ𝜆 2𝜋

Prior preference for models
Can be set to 1 for example

Likelihood ratio of the best 
fit of the models to the 
data (MLEs) – “goodness 
of fit”

Ockham factor: penalty 
for introducing additional 
degrees of freedom into a 
theory 

• The likelihood ratio alone will always favour the model with the closer fit to data
• The Ockham factor penalizes more complex theories (Ockham’s razor)
• Large prior ranges penalize a theory
• Small δ𝜆 penalize a theory (→ only a very narrow range of parameter values are compatible with the data)
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Bayes Factor

When we assign equal prior weight to either model, as discussed 
the prior ratio cancels out

𝑝 𝐴 𝐷

𝑝 𝐵 𝐷
=
𝑝(𝐷|𝐴)

𝑝(𝐷|𝐵)
≡ 𝐾

Where we define 𝐾 as the Bayes factor
This is the ratio of the Evidence 
under each model!
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Solving the integral…

• To this end, we have either:
• Solved integrals analytically
• Recognized the form of the posterior and then identified the correct pdf
• Expanded the posterior around its MAP with a Taylor series, i.e. 

approximated the posterior with a normal distribution
• Build ratios to avoid integrals by canceling them out
• ….

• This is somewhat unsatisfactory, and we want methods 
applicable to the general case →we need to resort to numerical 
methods
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Numerical Methods
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Trapezoidal rule

• The trapezoid method makes an approximation of 
the function 𝑓 𝑥 to be integrated as a trapezoid

𝐼 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 ≈ 𝑏 − 𝑎
1

2
(𝑓 𝑎 + 𝑓(𝑏))

• Can approximate integral values arbitrarily well by 
chaining together trapezoids over ∆𝑥 and going to 
smaller grids

• Works well in 1d, breaks down in higher 
dimesnions (curse of dimensionality)
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Hit-or-miss Integration

• Integration method based on random 
numbers, i.e. a Monte Carlo (MC) 
integration technique

• Encapsulating the function 𝑓 𝑥 under a 
uniform function 𝑔(𝑥) (= a box) for which 
we know the integral value
𝐼 = 𝑎׬

𝑏
𝑓 𝑥 𝑑𝑥 = 𝑟 𝑎׬

𝑏
𝑔 𝑥 𝑑𝑥, where 𝑟 ≈ 𝐻

𝑁

→ The error on 𝐼 scales with 1
𝑛

H = number of hits in N trials
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Geometry in higher dimesnions

Integration with „boxes“ – i.e. hypercubes, can become problematic in 
higher dimensions
• Volume of a unit hypercube (side lengths = 1) is always 𝑉𝑏𝑜𝑥 = 1
• Volume of a sphere in n dimensions is:

𝑉𝑠𝑝ℎ𝑒𝑟𝑒(𝑟) =
𝜋
𝑛
2

Γ(
𝑛
2
+ 1)

𝑟
𝑛
2

→For 2d, our efficiency of hit-or-miss is 𝜋
4
≈ 78%

→For 5d, the efficiency is ≈16%
→For 10d, our efficiency drops already to ≈0.2% (!!)
High-dimensional hypercubes have almost all Volume in the corners
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Sample mean MC
An integral can be rephrased as an expectation value over a distribution with pdf 𝑔

𝐼 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = න
𝑎

𝑏 𝑓 𝑥

𝑔 𝑥
𝑔 𝑥 𝑑𝑥 = 𝔼𝑔[

𝑓 𝑥

𝑔 𝑥
]

So long as 𝑔 𝑥 > 0 when 𝑓(𝑥) ≠ 0

We can simply use a flat distribution (a box) again with large enough boundaries.
→ This let’s us estimate the expectation value as the sample mean!

መ𝐼 =
1

n
෍

𝑖

𝑓 𝑥𝑖
𝑔 𝑥𝑖

Where the samples 𝑥𝑖 are generated according to 𝑔(𝑥)
The error of this method also scales as 1

𝑛
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Importance sampling

We can improve the precision of the sample mean MC when choosing a 
function 𝑔 𝑥 that has more probability mass where it is “more 
important”
→𝑔(𝑥) does not need to be uniform
→This is called importance sampling

Minimum variance is achieved when the function 𝑔 follows the shape of 
𝑓 very closely, i.e.  𝑔 𝑥 ≈

𝑓 𝑥

׬ 𝑓 𝑥 𝑑𝑥
=

𝑓 𝑥

𝐼
(here assuming f 𝑥 > 0 ∀𝑥)

In the limit, this requires knowledge of 𝐼, which is what we’re interested 
in in the first place
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Harmonic Mean

https://arxiv.org/abs/1808.08051

• Let’s define a normalized function:
ሚ𝑓 𝑥 =

𝑓 𝑥

𝑎׬
𝑏
𝑓 𝑥 𝑑𝑥

=
𝑓 𝑥

𝐼

• Calculating the expectation value

𝔼 ǁ𝑓

1

𝑓 𝑥
= න

𝑎

𝑏 1

𝑓 𝑥
ሚ𝑓 𝑥 𝑑𝑥 =

𝑉

𝐼
=
𝑏 − 𝑎

𝐼

→Our integral can be estimated as መ𝐼 =
𝑏−𝑎

1

𝑛
∑𝑖

1

𝑓(𝑥𝑖)

where 𝑥𝑖 are distributed according to ሚ𝑓

(this is a useful techniques if we have access to samples of ሚ𝑓, e.g. the posterior)
This method has also been called ‘The worst Monte Carlo algorithm ever’ (Radford Neal), 
because it’s easy for 1

𝑓
to diverge. (See our paper for more https://arxiv.org/abs/1808.08051)
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Quasi Random Sampling

• MC sampling has some limitations:
• Parts of the phase space may be empty 

(no samples)
• Other parts may have several samples 

close together (clumping)

• In rel. low numbers of dimensions, 
this can be improved by using quasi 
random numbers instead of pseudo 
random numbers
• A.k.a. “Low discrepancy sequences”

• Further reading: 
https://extremelearning.com.au/unrea
sonable-effectiveness-of-
quasirandom-sequences/
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Summary of today

• Bayes in more than one parameter
• Marginalization of nuisance parameters: incorporates our ignorance
• Conditional on nuisance parameters: assumes perfect knowledge

• Approximation of posterior by Gaussian
• Can give us the MAP plus error bars

• Bayes for Model selection:
• Compare posterior odds or Bayes factor
• Additional degrees of freedom and large priors are penalized

• Numerical methods for integration
• Becomes a difficult problem in higher dimensions
• Saw a few basic algorithms

→Next week we’ll discuss Markov chain Monte Carlo (MCMC)
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MCMC Sampling
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Monte Carlo Methods

• We had already talked about MC methods for generating random 
numbers
• Uniform random numbers between 0 and 1
• Random numbers distributed according to other densities via 

transformation
• Accept-Reject Sampling
• …

• We have used those also for computing integrals
• Last lecture: sample mean MC, Harmonic mean, …
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Today

• Use Markov Chain MC to generate samples 𝑥𝑖 that are distributed 
according to a target distribution 𝜋
• This could for instance be our posterior distribution
• But is not limited to the case of Bayes

• Pros:
• This new method will work well in high numbers of dimensions
• Will allow to sample from arbitrary distributions

• Cons:
• The generated samples will no longer be 𝑖. 𝑖. 𝑑. but can be correlated
→ The effective sample size can be smaller than 𝑛
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Markov Chain

Xt-1 Xt Xt+1 Xt+2

Markov Chain

Random 
Number 
Generator

Ut-1 Ut Ut+1 Ut+2

𝑥𝑖~𝜋

𝑢𝑖~𝑈(0,1)
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Markov Process

The defining property of a Markov Process is, that the probability 
distribution of 𝑥 depends only on the current state, i.e.:

𝑝 𝑎 < 𝑥 < 𝑏 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑝 𝑎 < 𝑥 < 𝑏 𝑥𝑛
→This means any previous behavior does not matter

Example: A random walk, where each step is going forward a fixed 
length left or right from the current position is a Markov Process

For a discrete state space, this is called a Markov Chain
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Transition Kernel & Stationarity

The transition kernel (transition probability function) is the key to a 
Markov chain
→ It tells us where to go from a state to the next one, i.e. it defines:

𝑝 𝑥𝑡 𝑥𝑠 , 𝑡 > 𝑠

Definition: If the joint probability distribution of
{𝑥𝑡1, 𝑥𝑡2, 𝑥𝑡3, … , 𝑥𝑡𝑛} and {𝑥𝑡1+ℎ, 𝑥𝑡2+ℎ , … , 𝑥𝑡𝑛+ℎ}

are the same for any 𝑡 and offset ℎ we have a stationary process
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Transition matrix

• For a Markov chain (discrete steps), we can express the probability to 
go from a state 𝑖 to to state 𝑗 in one step as the matrix 𝑃𝑖𝑗
• 𝑃𝑖𝑗 is called the “1-step transition probability matrix”
• This matrix + some initial conditions fully define a Markov Chain

• Chapman-Kolmogorov Relation:
If our Markov chain is in the state of a stationary process, then:

𝑃𝑛𝑖𝑗 =෍

𝑘

𝑃𝑟𝑖𝑘𝑃
𝑠
𝑘𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑛 = 𝑟 + 𝑠

(𝑃𝑛 is the n-step transition probability)
→ Transition probability can be decomposed into intermediate steps
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Irreducible process

If all possible states that we can be in communicate with each 
other, they are all in the same equivalence class

• This means any state 𝑖 can be reached from any other state 𝑗 in finite time
• (And vice versa 𝑗→𝑖)

Definition: An irreducible Markov Chain contains only one 
equivalence class
→ If this would not be the case, our chain would get “stuck” 
somewhere and cannot reach other parts, so it cannot sample from 
our target distribution correctly
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Example: Random Walks in 1d

• Gambler’s Ruin

M
on

ey

Game Number

…

lose

w
in

w
in

Gambler ruined

Casino bankrupt

Rules:
• Start with some Money
• Play games with e.g. 50/50 

chance of winning/losing
• Play until you have no 

money left (Gambler’s 
ruin) or you bankrupted 
the casino
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Gambler’s Ruin

• The 1-step transition matrix will look like:

• The two end points are absorbing:
• You cannot play anymore if you (or the casino) run out of money!
• The endpoints can be reach from anywhere, but the system remains in such a 

state once it is reached
• The system contains three classes and therefor is not irreducible!
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Ehrenfest Model

Consider a different 1d random walk, where there is an equilibrium 
position and a restoring force proportional to the distance to the 
equilibrium

• 1-step transition Matrix becomes:

• The endpoints are “reflecting”
• This system is irreducible
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Aperiodic process

• The period 𝑑 of a state is the greatest common divisor for 𝑛 ≥ 1 for 
which 𝑃𝑛𝑖𝑖 > 0

This means the probability to come back to state 𝑖 after taking 𝑛 steps is non zero

Definition: If the period 𝑑 = 1, our chain is said to be aperiodic

Example:
• Random walk with probability 𝑝 to go left and 𝑞 = 1 − 𝑝 to go right: 

period d = 2 → not aperiodic
• Random walk with a probability > 0 to remain (1 − 𝑝 − 𝑞) is aperiodic

xi 𝑛 steps
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Recurrence

https://en.wikipedia.org/wiki/Random_walk

Definition: A state is said to be recurrent if

෍

𝑛=1

∞

𝑃𝑛𝑖𝑖 = ∞

This means that we are guaranteed to be back to state 𝑖 in finite time.

Example:
• Random walk in 1d and 2d is recurrent
• Random walk in 3d is not recurrent

(see e.g. https://en.wikipedia.org/wiki/Random_walk for details)
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Basic Limit Theorem

If we only consider irreducible, recurrent, and aperiodic Markov chains
→Then the basic limit theorem holds:

lim
𝑛→∞

𝑃𝑛𝑗𝑖 = 𝑃𝑛𝑖𝑖

This means that after a large number of steps, it does not matter where 
we started from!
→Independent of the initial conditions, we will eventually reach the 

stationary distribution
Such a Markov Chain is also called “ergodic”
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Ergodicity

For an ergodic process with stationary probability distribution 𝜋:

lim
𝑛→∞

𝑃𝑛𝑗𝑗 = 𝜋𝑗 =෍

𝑖=0

∞

𝜋𝑖 𝑃𝑖𝑗

→Our goal is to find a Markov chain with stationary distribution 𝜋 = 
our desired pdf of interest (e.g. a posterior probability function)
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Convergence

How do we know if we reached the stationary distribution?
(i.e. how do we know if 𝑛 is large enough?)

Detailed balance is a sufficient condition:
𝜋𝑖𝑃𝑖𝑗 = 𝜋𝑗𝑃𝑗𝑖

Since: ∑𝑖=0
∞ 𝜋𝑖 𝑃𝑖𝑗 = ∑𝑖=0

∞ 𝜋𝑗 𝑃𝑗𝑖 = 𝜋𝑗∑𝑖=0
∞ 𝑃𝑗𝑖 = 𝜋𝑗
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Actual MCMC Algorithms
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Metropolis Algorithm

Original MCMC algorithm (1953):
1. Suppose we are in state 𝑥, generate a new state 𝑦 according to a 

symmetric function 𝑔 𝑦 𝑥 = 𝑔(𝑥|𝑦) (= proposal distribution)

2. Calculate 𝑟 = 𝜋(𝑦)

𝜋(𝑥)

3. Draw a uniform random number 𝑢~𝑈 0,1
If 𝑢 < 𝑟 accept new state 𝑦. Otherwise remain in state 𝑥

(So a step with 𝜋 𝑦 > 𝜋(𝑥) is always accepted)
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Example: Normal from Uniform
Trace of the Chain: Density of generated Samples:Metropolis MC:
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Importance of proposal Function

• The speed with which we reach the stationary distribution 
depends on our choice of proposal distribution
• The acceptance fraction should not be too low
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Metropolis-Hastings Algorithm

Generalization of Metropolis Algorithm for non-symmetrical 
proposal functions 𝑔:
1. Suppose we are in state 𝑥, generate a new state 𝑦 according to 

proposal distribution 𝑔 𝑦 𝑥

2. Calculate 𝑟 = 𝑚𝑖𝑛
𝜋 𝑦 𝑔(𝑥|𝑦)

𝜋 𝑥 𝑔(𝑦|𝑥)
, 1

3. Draw a uniform random number 𝑢~𝑈 0,1
If 𝑢 < 𝑟 accept new state 𝑦. Otherwise remain in state 𝑥
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MCMC for Bayes

In Bayesian Inference, we want to know properties of the posterior 
probability: 

𝑝 𝜃 𝑥,𝑀 =
𝑝 𝑥 𝜃,𝑀 𝑝(𝜃|𝑀)

𝑝(𝑥|𝑀)

Using Metropolis-(Hastings), we only need the ratio for the transition 
probability from state 𝜃𝑜𝑙𝑑 → 𝜃𝑛𝑒𝑤:

𝑝 𝜃𝑛𝑒𝑤 𝑥,𝑀
𝑝 𝜃𝑜𝑙𝑑 𝑥,𝑀

=
𝑝 𝑥 𝜃𝑛𝑒𝑤, 𝑀 𝑝(𝜃

𝑛𝑒𝑤
|𝑀)

𝑝 𝑥 𝜃𝑜𝑙𝑑, 𝑀 𝑝(𝜃
𝑜𝑙𝑑
|𝑀)

The evidence cancels out!!! (it is independent of 𝜃)
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Practical considerations

• We start our Markov Chain from some arbitrary starting (seed) point
• It takes a while until:

A) the proposal function is tuned
B) we reach equilibrium (the chain is sampling from the stationary distribution), i.e. 
convergence

→First “bunch” of samples in a chain are discarded (burn-in)
How many is a non-trivial question
• Some standard diagnostics include auto-correlation lengths
• Or start multiple chains and compare their trace
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Other Algorithms

• We have discussed the most vanilla MCMC algorithms
• Metropolis
• Metropolis-Hastings

• There exist a multitude of other algorithms
• More basic: Gibbs sampler, slice sampler, …
• Using gradient information: Hamiltonian MC (only works for smooth, 

differentiable, unimodal target densities, but up to very high dimensions!)
• Nested Sampling: different approach, similar to Lebesgue integration 

(Also gives Evidence value in addition to samples!)
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A few libraries to consider
• General Libraries:

• PyMC3: https://github.com/pymc-devs/pymc
• BAT: https://github.com/bat/bat (Python via https://github.com/bat/batty)

• Affine sampler:
• Emcee: https://emcee.readthedocs.io/

• Hamiltonian MC:
• STAN: https://mc-stan.org/

• Nested sampling:
• Multinest: https://github.com/rjw57/MultiNest
• Ultranest: https://johannesbuchner.github.io/UltraNest/index.html
• Dynesty: https://dynesty.readthedocs.io/en/stable/
• Polychord: https://github.com/PolyChord/PolyChordLite

• And many, many more…
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Summary of MCMC

• MCMC sampling offers a way to generate samples according to a 
target density
• Needs to fulfil some criteria: irreducible, aperiodic & recurrent (+ ergodic) 

to be guaranteed to converge to the stationary distribution
• Detailed balance sufficient criteria

• Example Algorithm Metropolis-(Hastings):
• Needs only a choice of (symmetric) proposal Distribution
• And the ratio of the target density probability between current and 

proposed state
• Other (more advanced) algorithms exist: HMC, Nested Sampling, 

…
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