

Drone-Based Calibration of AugerPrime Radio Antennas at the Pierre Auger Observatory

Alex Reuzki, Maximilian Straub, Bjarni Pont, Martin Erdmann

GEFÖRDERT VOM

Radio Emission of Air Showers

Geomagnetic Effect (left):

 Deflection of e⁺ & e⁻ in Earth's magnetic field

Physics

- Creates time-varying current
- Main contribution

Askaryan Effect (right):

- Shower particles ionizing air molecules
- Electrons follow, nuclei stay behind
- Positrons annihilate
- Charge-excess
- Small contribution

Pierre Auger Observatory

Pierre Auger Observatory:

- 1660 Water-Cherenkov Detector Stations
- 4 Fluorescence Detector sites

Science Goals:

Pierre Auger Observatory:

- Study cosmic rays of highest energies,
 - $E > 10^{17} ext{ eV}$ (UHECR)
- Origin of UHECR
- Acceleration mechanism

AugerPrime Upgrade:

• Improve mass sensitivity

AugerPrime Radio Detector

Pierre Auger Observatory:

- 1660 Water-Cherenkov Detector Stations
- 4 Fluorescence Detector sites

Radio Detector (RD):

- Deployed on **1660** stations
- Short aperiodic loaded loop antenna (SALLA)
- Dual-polarized
- 30 80 MHz range
- 250 MHz sampling rate

General Calibration Strategy

Absolute Galactic Calibration:

- Calibrate **absolute scale** as function of frequency
- Galaxy emits radio in relevant frequency band
- Use galaxy as reference signal

Relative Drone-Based Calibration:

- Calibrate **direction-dependence** of antenna pattern for each frequency
- Cross-Check with Simulation

Full-system calibration

Drone Calibration Strategy

PIERRE AUGER OBSERVATORY

XK

Drone Calibration Strategy

JGER
SERVATORYGain CalibrationRead-out VoltageIncoming electric field $\mathcal{U}(\Phi, \Theta, f) = \left| \vec{H}_k(\Phi, \Theta, f) \right| \cdot \left| \vec{\mathcal{E}}_k(f) \right|$ Vector Effective Length (VEL)

VEL for transmission measurements:

 $|H(\Phi,\Theta,f)| \propto R \cdot \sqrt{P(\Phi,\Theta,f)}$

Position (Φ , Θ)

7

AUGER

Calibration Setup

DJI M600 Pro

- Built-in GPS
- Gimbal for transmission
 antenna
- Swap polarization between horizontal & vertical

Differential GPS Base Station

Physics

Correction

Signals

 O(cm) accuracy in station reference frame

AUGER

dGPS Antenna

Differential GPS

dGPS Data

"Take Picture"

Trigger

 High accuracy in base station reference frame

 Logger triggered at each waypoint

Physics Institute

Measurement Campaign

- 3.5 weeks in Argentina: Oct 26 Nov 18, 2023
- Performed flights: 64
- Average flight duration: ≈ **13 min**
- Total flight time: 13 h 21 min

First Results – Example Flight

- φ-Polarization flight
- Slices at different zenith angles θ
- Simulation (red) normalized to data
 - ➢ In rough agreement at 7%

- <u>Uncertainties:</u>Systematic: 3%
 - Electronics
 - Position Accuracy
- Statistical: < 1%
 - Background Noise
- Not included:
 - Drone-Influence Correction

Summary & Outlook

Summary:

• Performed a **full calibration campaign** on site in Argentina

Outlook:

- Interpolation with Information Field Theory
- Repeat campaign in Oct/Nov 2025 with knowledge we gained last year

Backup

Position Uncertainty

- dGPS time uncertainty and RD position uncertainty increases total position uncertainty
- Uncertainty in ${\rm O(10cm)} \rightarrow$ 0.3% at 30 m distance

Misalignment Correction & Drone Influence

- Quantify misalignment using two angles
 - **α**: Misalignment in azimuth of emitter
 - **β**: Misalignment in zenith of emitter
- Emitter in free-space represents a normal dipole

ϕ -polarization

- In azimuth (α): $\cos^2 \alpha$
- In zenith (β): constant

• In zenith (β): $\cos^2 \beta$

*****Dipole behavior changes when adding a surrounding structure (drone+gimbal)!

Correction not implemented yet, expected to be in the order of 1-10%

Outlook: Interpolation

- Interpolation with Information Field Theory (IFT)
- Reconstruct high dimensional signal field given sparse data
- Bayesian statistics

> Interpolate the VEL in frequency, θ and ϕ with bayesian uncertainties

Physics Institute III

Ø

Reconstructed VEL / m

0.025 O.

0.000