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Radio Detection of Cosmic Neutrinos

• The neutrino collides with a nucleus in the ice

• The collision induces a particle shower

• The particle shower creates a radio pulse via 
Askaryan emission 

• The radio pulses propagate through the ice 
until reaching an antenna

• The pulse is measured by one or multiple 
radio antennas
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IceCube - Gen2 Radio
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• Is planned to instrument ~500 km³ of ice

• Its sensitivity is expected to tap into the 
predicted UHE neutrino flux

• Counting experiment or neutrino observatory?



Two Different Station Designs
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Deep 
station

Shallow 
station

• MC generated events for a single station @South Pole

• The events have a uniform shower energy distribution

• Single station event topologies:
1. Hadronic shower (                   ,                  )

2. Hadronic shower + EM shower (                )

• The current IceCube Gen2 station:
• Shallow – 5 antennas 

• Deep – 16 antennas 

• 2.1 million neutrino events for each station layout

𝜈𝑒  − 𝐶𝐶

𝜈𝑒,𝜇,𝜏 − 𝑁𝐶 𝜈𝜇,𝜏 − 𝐶𝐶



What will we do after 
measuring the first 
neutrino?

raw traces
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Important Deep Learning Concepts

ResNet

• Developed for image classification

• Allows for very deep networks 
without vanishing gradients

• Previously used for GW detection

Nils Heyer 12



Important Deep Learning Concepts

ResNet

• Developed for image classification

• Allows for very deep networks 
without vanishing gradients

• Previously used for GW detection

Normalizing Flow

• A function that maps a gaussian 
PDF to a non-Gaussian target PDF

• Parameters of the flow can be 
learned by a neural network

• Can model complex PDF shapes

base targetf1 fnf2 f3 …
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Model architecture

Model Shallow:
1 x 5 x 512

Model Deep:
1 x 16 x 2046
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Model architecture

Model Shallow:
1 x 5 x 512
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64 filter
kernel (1 x 16),
average pooling

CNN2 
4x 1d-conv
kernel (1 x 16),
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Model Deep:
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Normalizing Flow – 
Neutrino Direction

Improvements to previous reconstructions:

1. One model (per station type) to predict all parameters

2. Normalizing flows return full posterior PDFs allowing for 
event-by-event uncertainties

3. The model has no prior knowledge of the shower type

4. No analysis cuts are needed – all neutrino events can be used

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/abs/2211.01520
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Results 
– Energy and Direction

• Quantifying the size of our uncertainties

• Performance gets better with shower energy

• Hadronic showers are easier to reconstruct but 
don’t tell us as much about the neutrino

• ‘deep’ stations have better energy resolution

• ‘shallow’ stations have better direction resolution

deep station

shallow station

deep station

shallow station



Summary & Outlook

• Radio Neutrino Detectors can instrument enormous volumes of ice

• After the first detection reconstruction will become a priority

• I created a model that can reconstruct all relevant properties

• Resolution at 1EeV shower energy:

• Next up:
• Nice statistical uncertainties, but what about systematics?

• How similar is a measured event to our Monte Carlo simulations?

• What are the effects of birefringence?

Resolution at 1EeV (had.) Shallow Station Deep Station

Shower Energy 0.3 log E 0.15 log E 

68% Uncertainty size ~10 deg2 ~70 deg2 
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Thank you!
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Usually we attack the science, 
but sometimes science strikes back

24



Why measure Cosmic Neutrinos?
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IceCube – The km3 Neutrino Telescope

• Instruments a cubic kilometre of ice

• Successfully measured the cosmic 
neutrino flux in the TeV-PeV range

•  Detected point sources of neutrinos 
(NGC1068, TXS 0506+056)

But there is more…

Nils Heyer 26
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IceCube – The km3 Neutrino Telescope

• Instruments a cubic kilometre of ice

• Successfully measured the cosmic 
neutrino flux in the TeV-PeV range

•  Detected point sources of neutrinos 
(NGC1068, TXS 0506+056)

But there is more…

• Radio neutrino detection extends the 
reach into the EeV range

• Can cost effectively instrument 
hundreds of cubic kilometres of ice
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