

Universität Siegen /

PPS Center for Parti Physics Siegen

rai y Physics Particle



image credit: Steven Saffi, Pierre Auger Collaboration

# Directional Search for Ultra-High-Energy Photons Using the Surface Detector of the Pierre Auger Observatory

Astroparticle School 2024 (7 Oct - 15 Oct)

Tim Fehler, Marcus Niechciol, Markus Risse Center for Particle Physics Siegen, Universität Siegen, Germany Directional Search for Ultra-High-Energy Photons Using the Surface Detector of the Pierre Auger Observatory

# CONTENT

Introduction to UHE Photons

Directional Search for UHE Photons

**3** Summary and Outlook

### UHE photons as messengers of the Universe



- Open question in astrophysics: **Origin** and **nature** of ultra-high-energy (UHE,  $E \gtrsim 10^{17} \text{ eV}$ ) cosmic rays?
  - Problem: Magnetic deflection
- UHE photons (and neutrinos) produced in interactions of cosmic radiation
  - Near sources (dense regions): Neutral particles point right back at their sources!
  - ▶ Background fields: CMB  $\rightarrow$  GZK effect, . . . ? Photon flux sensitive to cosmic-ray composition
- Other possibilities: Interaction of extragalactic cosmic rays with matter in our galaxy, BSM processes (SHDM), ....
- Photons themselves can interact with background fields: Effective UHE photon horizon at the order of 10 Mpc (10<sup>18</sup> eV)

M. Risse and P. Homola, Mod. Phys. Lett. A 22, 749-766 (2007)

- > Photons initiate air showers in the atmosphere, just like hadronic cosmic rays
- Detection with ground-based air-shower detectors possible
- Central challenge: Distinguishing photon-induced showers from vast background of hadronic showers

- Information about primary particle is encoded in shower development (composition)
- Problem: UHE photons above ~ 10<sup>19.5</sup> eV may interact with geomagnetic field jump-starting shower development (pre-showering)

- Photons initiate air showers in the atmosphere, just like hadronic cosmic rays
- Detection with ground-based air-shower detectors possible
- Central challenge: Distinguishing photon-induced showers from vast background of hadronic showers

Information about primary particle is encoded in shower development (composition)

 Problem: UHE photons above ~ 10<sup>19.5</sup> eV may interact with geomagnetic field jump-starting shower development (pre-showering)



Tim Fehler (CPPS, Universität Siegen)

image credit: M. Niechciol

- > Photons initiate air showers in the atmosphere, just like hadronic cosmic rays
- Detection with ground-based air-shower detectors possible
- Central challenge: Distinguishing photon-induced showers from vast background of hadronic showers
- Information about primary particle is encoded in shower development (composition)
- Problem: UHE photons above ~ 10<sup>19.5</sup> eV may interact with geomagnetic field jump-starting shower development (pre-showering)



- > Photons initiate air showers in the atmosphere, just like hadronic cosmic rays
- Detection with ground-based air-shower detectors possible
- Central challenge: Distinguishing photon-induced showers from vast background of hadronic showers
- Information about primary particle is encoded in shower development (composition)
- Problem: UHE photons above ~ 10<sup>19.5</sup> eV may interact with geomagnetic field jump-starting shower development (pre-showering)



# Pierre Auger Observatory

- Largest cosmic-ray observatory in the world
- Located near Malargüe, Argentina
- Energy range:  $10^{17} \,\mathrm{eV}$  to  $> 10^{20} \,\mathrm{eV}$
- Hybrid detector
- Surface detector array (SD)
  - 1660 water-Cherenkov detectors over 3000 km<sup>2</sup>
  - Footprint of shower

### Fluorescence detector (FD)

- 27 telescopes distributed over 4 sites overlooking SD array
- Longitudinal shower development
- $\blacktriangleright \sim 15\%$  duty cycle
- Auxiliary detector systems (infill arrays, radio antennas, ...)
- Atmospheric monitoring (LIDAR, laser facilities, ...)
- Currently: AugerPrime upgrade
  - Primary mass estimate on shower-by-shower basis

Pierre Auger Coll., NIMA 798, 172-213 (2015)



# Current status of (published) UHE photon searches

- No UHE photon unambiguously identified so far
- Limits on diffuse integral flux of photons



- Directional efforts (blind and targeted) using hybrid data:
  - Pierre Auger Coll., ApJ 789, 160 (2014)



Pierre Auger Coll., ApJL 837, L25 (2017)

| Class          | N  | P    | $\mathscr{P}_{w}$ | р     | $p^*$ | $f_{\rm UL}^{0.95}$ [km <sup>-2</sup> yr <sup>-1</sup> ] |
|----------------|----|------|-------------------|-------|-------|----------------------------------------------------------|
| msec PSRs      | 67 | 0.14 | 0.57              | 0.010 | 0.476 | 0.043                                                    |
| γ-ray PSRs     | 75 | 0.98 | 0.97              | 0.007 | 0.431 | 0.045                                                    |
| LMXB           | 87 | 0.74 | 0.13              | 0.014 | 0.718 | 0.046                                                    |
| HMXB           | 48 | 0.84 | 0.33              | 0.040 | 0.856 | 0.036                                                    |
| H.E.S.S. PWN   | 17 | 0.90 | 0.92              | 0.104 | 0.845 | 0.038                                                    |
| H.E.S.S. other | 16 | 0.52 | 0.12              | 0.042 | 0.493 | 0.040                                                    |
| H.E.S.S. UNID  | 20 | 0.45 | 0.79              | 0.014 | 0.251 | 0.045                                                    |
| Microquasars   | 13 | 0.48 | 0.29              | 0.037 | 0.391 | 0.045                                                    |
| Magnetars      | 16 | 0.89 | 0.30              | 0.115 | 0.858 | 0.031                                                    |
| Gal. Center    | 1  | 0.59 | 0.59              | 0.471 | 0.471 | 0.024                                                    |
| LMC            | 3  | 0.62 | 0.52              | 0.463 | 0.845 | 0.030                                                    |
| Cen A          | 1  | 0.31 | 0.31              | 0.221 | 0.221 | 0.031                                                    |

Multimessenger efforts (GW follow-up) Pierre Auger Coll., ApJ 952, 91 (2023) Directional Search for Ultra-High-Energy Photons Using the Surface Detector of the Pierre Auger Observatory

# CONTENT

#### Introduction to UHE Photons

#### 2 Directional Search for UHE Photons

**3** Summary and Outlook

### Design of the analysis



#### NB: This is very much WIP!

#### Key aspects:

- Sole dependence on SD data (profiting from non-stop exposure)
- ► Full **phase I** data set (2004 2024)
- Modular design/implementation
  - Ease of development and maintainability (debugging, testing, ...)
  - Distributed computing (SiMPLE cluster)
- Overcoming technical limitation of pre-showering (E > 10<sup>19.5</sup> eV)

Details on the next slides ...

### Air-shower universality

Due to the averaging of the innumerable individual particle-level processes, the energy spectrum of secondary particles, as well as their angular and lateral distributions can be described by only the energy of the primary particle and the stage of shower development (shower age).

#### "All air showers look/behave the same" (non-trivial!)

Consequence: Signal (and risetime) in SD stations can be modeled as

 $f_{\text{univ}}(\underbrace{r,\psi,h,}_{\text{rel. pos. of station}},\underbrace{E,X_{\max},N_{\mu}}_{\text{air-shower}})$ 

M. Ave et al., Astroparticle Physics 87, 23–39 (2017) M. Ave et al., Astroparticle Physics 88, 46–59 (2017)

Universality reconstruction: From signal in SD stations estimate one unknown parameter





M. Stadelmaier et al., Phys. Rev. D 110, 023030 (2024)

### Air-shower universality

Due to the averaging of the innumerable individual particle-level processes, the energy spectrum of secondary particles, as well as their angular and lateral distributions can be described by only the energy of the primary particle and the stage of shower development (shower age).

- "All air showers look/behave the same" (non-trivial!)
- Consequence: Signal (and risetime) in SD stations can be modeled as



M. Ave et al., Astroparticle Physics 87, 23–39 (2017) M. Ave et al., Astroparticle Physics 88, 46–59 (2017)

Universality reconstruction: From signal in SD stations estimate one unknown parameter





M. Stadelmaier et al., Phys. Rev. D 110, 023030 (2024)

| Steps : | 1                                                                                                            | 2                                                                                                                                          | 3                                                                                                  | 4                                                                                                                |
|---------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Energy  | Reconstructed :<br>Start = median of<br>Ehad/EMC (0,51000)<br>Range = 10%-90%<br>quantiles                   | Fixed to reconstructed<br>value from step 1                                                                                                | Reconstructed :<br>Start = reconstructed<br>value from step 1<br>Range : 2/3 of range in<br>step 1 | Fixed to reconstructed value from step 3                                                                         |
| Core    | Fixed to standard SD<br>reconstruction + corrected<br>for the asymmetry as<br>function of cos <sup>2</sup> 0 | Reconstructed :<br>Start = standard SD<br>reconstruction +<br>corrected for the<br>asymmetry<br>Range = radius of 200m<br>from start value | Fixed to reconstructed value from step 2                                                           | Fixed to reconstructed value from step 2                                                                         |
| Xmax    | Using <b><xmax>(E)</xmax></b> for<br>photons                                                                 | Fixed to <xmax>(E) for<br/>the reconstructed energy<br/>is step 1</xmax>                                                                   | Using <b>«Xmax&gt;(E)</b> for<br>photons                                                           | Reconstructed :<br>Start = <xmax>(E) for the<br/>reconstructed energy in<br/>step 3<br/>Range = no bounds</xmax> |

Z. Torrès, GAP 2024, 003

- Idea developed by colleagues at Université Grenoble Alpes
- Four-step likelihood fit based on recorded signal and risetime in SD stations
  - signal/risetime assumed to follow Gaussian PDF with

$$\mu = f_{\text{univ}}(E, X_{\text{max}}, N_{\mu}, \ldots)$$

and  $\sigma$  estimated from simulations

$$\bullet \ N_{\mu} = \left\langle N_{\mu, \text{sim.}}^{p, \gamma} \right\rangle$$

ML fit one parameter at a time

### Initial parameter values:

•

- Standard reconstruction
- Customized photon energy scale with look-up tables
- Use mean  $X_{\max}(E)$  determined from simulations
- Slightly modified procedures for pre-showering photons and protons

▶ Yields: *E*, *X*<sub>max</sub>, log-likelihood ratios for hypotheses (photon/hadron) based on signal/timing-model

| Steps : | 1                                                                                                            | 2                                                                                                                                          | 3                                                                                                  | 4                                                                                                                |
|---------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Energy  | Reconstructed :<br>Start = median of<br>Ehad/EMC (0,51000)<br>Range = 10%-90%<br>quantiles                   | Fixed to reconstructed value from step 1                                                                                                   | Reconstructed :<br>Start = reconstructed<br>value from step 1<br>Range : 2/3 of range in<br>step 1 | Fixed to reconstructed<br>value from step 3                                                                      |
| Core    | Fixed to standard SD<br>reconstruction + corrected<br>for the asymmetry as<br>function of cos <sup>2</sup> 0 | Reconstructed :<br>Start = standard SD<br>reconstruction +<br>corrected for the<br>asymmetry<br>Range = radius of 200m<br>from start value | Fixed to reconstructed value from step 2                                                           | Fixed to reconstructed value from step 2                                                                         |
| Xmax    | Using <b><xmax>(E)</xmax></b> for<br>photons                                                                 | Fixed to <xmax>(E) for<br/>the reconstructed energy<br/>is step 1</xmax>                                                                   | Using <b>«Xmax&gt;(E)</b> for<br>photons                                                           | Reconstructed :<br>Start = <xmax>(E) for the<br/>reconstructed energy in<br/>step 3<br/>Range = no bounds</xmax> |
|         |                                                                                                              |                                                                                                                                            | 7                                                                                                  | Torrès GAP 2024 003                                                                                              |

- Idea developed by colleagues at Université Grenoble Alpes
- Four-step likelihood fit based on recorded signal and risetime in SD stations
  - signal/risetime assumed to follow Gaussian PDF with

$$\mu = f_{\text{univ}}(E, X_{\max}, N_{\mu}, \ldots)$$

and  $\sigma$  estimated from simulations

$$\bullet N_{\mu} = \left\langle N_{\mu, \text{sim.}}^{p, \gamma} \right\rangle$$

ML fit one parameter at a time

### Initial parameter values:

•

- Standard reconstruction
- Customized photon energy scale with look-up tables
- Use mean  $X_{\max}(E)$  determined from simulations
- Slightly modified procedures for pre-showering photons and protons

**Yields:**  $E, X_{max}$ , log-likelihood ratios for hypotheses (photon/hadron) based on signal/timing-model

| Steps : | 1                                                                                                            | 2                                                                                                                                          | 3                                                                                                  | 4                                                                                                                |
|---------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Energy  | Reconstructed :<br>Start = median of<br>Ehad/EMC (0,51000)<br>Range = 10%-90%<br>quantiles                   | Fixed to reconstructed<br>value from step 1                                                                                                | Reconstructed :<br>Start = reconstructed<br>value from step 1<br>Range : 2/3 of range in<br>step 1 | Fixed to reconstructed value from step 3                                                                         |
| Core    | Fixed to standard SD<br>reconstruction + corrected<br>for the asymmetry as<br>function of cos <sup>2</sup> 0 | Reconstructed :<br>Start = standard SD<br>reconstruction +<br>corrected for the<br>asymmetry<br>Range = radius of 200m<br>from start value | Fixed to reconstructed value from step 2                                                           | Fixed to reconstructed value from step 2                                                                         |
| Xmax    | Using <b><xmax>(E)</xmax></b> for<br>photons                                                                 | Fixed to <xmax>(E) for<br/>the reconstructed energy<br/>is step 1</xmax>                                                                   | Using <b>«Xmax&gt;(E)</b> for<br>photons                                                           | Reconstructed :<br>Start = <xmax>(E) for the<br/>reconstructed energy in<br/>step 3<br/>Range = no bounds</xmax> |
|         |                                                                                                              |                                                                                                                                            | 7                                                                                                  | Torrès GAP 2024 00                                                                                               |

- Idea developed by colleagues at Université Grenoble Alpes
- Four-step likelihood fit based on recorded signal and risetime in SD stations
  - signal/risetime assumed to follow Gaussian PDF with

$$\mu = f_{\text{univ}}(E, X_{\text{max}}, N_{\mu}, \ldots)$$

and  $\sigma$  estimated from simulations

$$\bullet \ N_{\mu} = \left\langle N_{\mu, \text{sim.}}^{p, \gamma} \right\rangle$$

ML fit one parameter at a time

### Initial parameter values:

•

- Standard reconstruction
- Customized photon energy scale with look-up tables
- Use mean  $X_{\max}(E)$  determined from simulations
- Slightly modified procedures for pre-showering photons and protons
- **Yields:**  $E, X_{max}$ , log-likelihood ratios for hypotheses (photon/hadron) based on signal/timing-model



- First adoption study shows results competitive with current SD analysis (Pierre Auger Coll., JCAP 2023, 021 (2023))
- New! For MVA event classification: Use E, θ, X<sub>max</sub> and primary likelihoods, and assign single discriminatory parameter with BDT
  - "photon-likeliness" of event  $\rightarrow$  candidate cut
- Clean and modern reimplementation of procedure √, confirmation of results with up-to-date simulation set provided by Collaboration, fine-tuning



- First adoption study shows results competitive with current SD analysis (Pierre Auger Coll., JCAP 2023, 021 (2023))
- New! For MVA event classification: Use E, θ, X<sub>max</sub> and primary likelihoods, and assign single discriminatory parameter with BDT
  - ▶ "photon-likeliness" of event  $\rightarrow$  candidate cut
- Clean and modern reimplementation of procedure √, confirmation of results with up-to-date simulation set provided by Collaboration, fine-tuning



- First adoption study shows results competitive with current SD analysis (Pierre Auger Coll., JCAP 2023, 021 (2023))
- New! For MVA event classification: Use E, θ, X<sub>max</sub> and primary likelihoods, and assign single discriminatory parameter with BDT
  - ▶ "photon-likeliness" of event  $\rightarrow$  candidate cut
- Clean and modern reimplementation of procedure √, confirmation of results with up-to-date simulation set provided by Collaboration, fine-tuning



- ▶ Pierre Auger Observatory can cover declinations between  $-90^{\circ}$  and  $+20^{\circ}$  (for  $\theta \leq 60^{\circ}$ )
- Regular binning of the sky (target separation ~ angular resolution) or unbinned density method?
- Using "photon-like" subset of data
- Background estimation from data
  - Aiming to avoid technique not suited for celestial south-pole region
- Search for excess  $\rightarrow$  p-value
- Up-to-date catalog of promising source candidate classes and their positions
- If no excess is found: Calculation of upper limits





HEALPix discretation of sphere K. M. Górski et al., ApJ 622, 759 (2005) K. M. Górski and E. Hivon, Astrophys. Source Code Libr., ascl:1107.018 (2011)

Directional Search for Ultra-High-Energy Photons Using the Surface Detector of the Pierre Auger Observatory

# CONTENT

Introduction to UHE Photons

Directional Search for UHE Photons

**3** Summary and Outlook

- UHE photons are connected to diverse physical processes and searching for them allows us to probe various scenarios for the origin and nature of UHE cosmic rays.
- Novel directional search for UHE photons exploiting the superb collected exposure of the SD of the Pierre Auger Observatory
- Event reconstruction is complemented by a new universality-based multistage fit and subsequently a dedicated event classification.
- A "photon-like" subset of data will be analyzed for directional excesses in a blind and a targeted manner.
- Further studies: How can the additional components (AugerPrime upgrade) supplement this analysis? Would a real-time application for transients be conceivable?

# Thank you for your attention!



# How to identify UHE photon primaries





M. Risse and P. Homola, Mod. Phys. Lett. A 22, 749-766 (2007)

Energy loss length of photons in background fields



M. Risse and P. Homola, Mod. Phys. Lett. A 22, 749-766 (2007)