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Extensive Air Showers
• Cascade of particles through hadronic and electromagnetic 

processes 

• Generated from (ultra-)high-energy cosmic rays 
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Primary

• Primary (energy, direction, shower profile)  : 
obtained via hybrid measurement (scintillation + 
fluorescence yield)
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Radio Emission of Air Showers
• Geomagnetic emission: time-dependent transverse currents via 

geomagnetic field 

•    

•
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• Charge-excess emission: time-dependent ionisation of air 
molecules 
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• Charge-excess emission: time-dependent ionisation of air 
molecules 
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Radio Emission of Air Showers
• Geomagnetic emission: time-dependent transverse currents via 

geomagnetic field 
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• Charge-excess emission: time-dependent ionisation of air 
molecules 
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• Detection : voltage traces from radio antennas

e−

All information of primary (energy, direction, shower profile) 
encoded in traces 

 complementary approach to hybrid detection→
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 Reconstruction Xmax
 : atmospheric depth of shower maximum ( ) 

• Proxy for primary mass  crucial piece to understand UHECR origin

Xmax g cm−2

→

Primary

Xmax
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 Reconstruction Xmax
 : atmospheric depth of shower maximum ( ) 

• Proxy for primary mass  crucial piece to understand UHECR origin

Xmax g cm−2

→

Coloured : fluence from   
CoREAS simulation

S. Buitink et al. Phys.Rev.D 90 (2014) 082003

LOFAR Detector Layout

Primary

Xmax

• Only energy deposited (fluence) used  not all information utilised 

• Full shower profile cannot be reconstructed

→

Current: through fit quality of measurements with MC simulations (CoREAS)
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 Reconstruction Xmax
Primary

Goal: reconstruct the full air shower profile 

• Extract more profile parameters  more accurate mass reconstruction 

• Identification of substructures  can resolve dependence in hadronic 
interaction models 

• Leverage extremely precise measurements from Square Kilometre Array  

• All information already available through traces!

→

→

Xmax
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 Reconstruction Xmax
Primary

Goal: reconstruct the full air shower profile 

• Extract more profile parameters  more accurate mass reconstruction 

• Identification of substructures  can resolve dependence in hadronic 
interaction models 

• Leverage extremely precise measurements from Square Kilometre Array  

• All information already available through traces!

→

→

Challenges:  

• Spatial & time-dependent processes  4-D problem 

• Trace = field  many d.o.f.  ( )

→

→ > O(103)
Xmax



Keito Watanabe, Astroparticle School 2024
5

 Reconstruction Xmax
Primary

Goal: reconstruct the full air shower profile 

• Extract more profile parameters  more accurate mass reconstruction 

• Identification of substructures  can resolve dependence in hadronic 
interaction models 

• Leverage extremely precise measurements from Square Kilometre Array  

• All information already available through traces!

→

→

Challenges:  

• Spatial & time-dependent processes  4-D problem 

• Trace = field  many d.o.f.  ( )

→

→ > O(103)

Solution:  Information Field Theory!

Xmax



Keito Watanabe, Astroparticle School 2024

Information Field Theory (IFT)
• Bayesian framework applied on field-like structures 

• Easy-to-use Pythonic interface with  

• Requirements: fast & invertible forward model 

• More information on MPA/Ensslin/IFT, also talk by M. Jetti

6

Latent variables (Hyperprior)

Physical Model (Prior)

Response Model (Likelihood)

Data 

Inference Model
CLEAN

IFT

MPA; NRAO/Klasse Richard A. 

Reconstruction of Cygnus A

M. Straub, ARENA 2024

https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/research_IFT.html
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Prior Model
• Distribution to sample physical observables for reconstruction 

• Sample each latent parameter  as unit Gaussian  transform to ,  
via log-normal distribution

ξ → Xmax Nmax

7

Latent Variables

Physica

Response Model

Daa

Inference Model

Xmax = P(ξXmax
| μXmax

, σXmax
)

Nmax = P(ξNmax
| μNmax

, σNmax
)

 : atmospheric depth at shower maximum 

 : number of particles at 

Xmax

Nmax Xmax

ξXmax
∼ 𝒩(0,1)

ξNmax
∼ 𝒩(0,1)
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Gaisser-Hillas Function (R-L formulation)

Longitudinal Profile of Air Shower

8

N(X) = Nmax exp ( Xmax − X
L ⋅ R ) (1 +

R ⋅ (X − Xmax)
L )

R−2

 : atmospheric depth at shower maximum 

 : number of particles at  

 : shape parameters (fixed for now)

Xmax

Nmax Xmax

R, L

Laaa

Physical Model

Response Model

Daa

Inference Model

• Only consider longitudinal profile (1-D case) in this work (4-D case  P. Laub)→
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a = a( ⃗rant, Xmax, Xslice)

Template Synthesis

9

⃗B

1. Parametrise relations between showers using coREAS 
simulations for each atmospheric slice  & antennasXslice

Laaa

Physical Model

Response Model

Daa

Inference Model
Fast-forward model for radio emission (Desmet+ 2024)

Desmet et al. 2024, Astroparticle Physics, 157, 102923

Xslice

dcore = 75 m
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Template Synthesis
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⃗B

1. Parametrise relations between showers using coREAS 
simulations for each atmospheric slice  & antennasXslice

Laaa

Physical Model

Response Model

Daa

Inference Model
Fast-forward model for radio emission (Desmet+ 2024)

Desmet et al. 2024, Astroparticle Physics, 157, 102923

Xslice

A( f, ⃗rant, Xslice, Xmax) =

a Nslice exp(b f + c f2)

Xslice = 600 g cm−2

dcore = 75 m



Keito Watanabe, Astroparticle School 2024

Template Synthesis

10

⃗B

2. Calculate amplitude spectrum from simulated traces of 
origin shower for each slice & antenna 

Laaa

Physical Model

Response Model

Daa

Inference Model
Fast-forward model for radio emission (Desmet+ 2024)

[30, 80] MHz

Electric field traces of origin shower
Xmax, Nmax

dcore = 75 m
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Template Synthesis
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⃗B

2. Calculate amplitude spectrum from simulated traces of 
origin shower for each slice & antenna 

Laaa

Physical Model

Response Model

Daa

Inference Model
Fast-forward model for radio emission (Desmet+ 2024)

[30, 80] MHz

Electric field traces of origin shower
Xmax, Nmax

Amplitude spectrum
dcore = 75 m
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Template Synthesis
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⃗B

Xmax, Nmax

3. Synthesise emission from target shower using relations with 
origin shower 

Laaa

Physical Model

Response Model

Daa

Inference Model
Fast-forward model for radio emission (Desmet+ 2024)

Xmax, Nmax

Solid: Origin Shower 
Dashed: Target Shower

[30, 80] MHzdcore = 75 m
Amplitude spectrum
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Template Synthesis
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⃗B

Xmax, Nmax

3. Synthesise emission from target shower using relations with 
origin shower 

Laaa

Physical Model

Response Model

Daa

Inference Model
Fast-forward model for radio emission (Desmet+ 2024)

Xmax, Nmax

Solid: Origin Shower 
Dashed: Target Shower

[30, 80] MHzdcore = 75 m
Amplitude spectrum
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Template Synthesis

• Frequency band of 30 - 80 MHz 

• Template synthesis match simulated results 
 5 %! 

• < 1 s per synthesis  viable physical model 
for IFT reconstruction

≲

→
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Electric field trace at single antenna from all slices for simulated target shower 
and synthesised target shower

Laaa

Physical Model

Response Model

Daa

Inference Model
Verification
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Instrumental Response

13

Currently not implemented!  use electric field traces for now→

Laaa

Physica

Response Model

Daa

Inference ModelIdea: Transform electric field trace  voltage trace through antenna response →

Glaser et al., Eur. Phys.Jour. C (2019) 79: 464

Antenna Response
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(Data)
• Synthesised data from model in [30, 80] MHz band, 15 antennas 

•  Noise added through covariance matrix: 

• 30% of maximum amplitude from all antennas (calibration uncertainty) 

• 50% of maximum amplitude from each antenna (antenna-to-antenna uncertainty)
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Laaa

Physica

Response Model

Data

Inference Model

Radio Footprint of Shower Electric Field Traces of Shower
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Preliminary Results
•  and  accurately reconstructed as expected Xmax Nmax

15

Laaa

Physica

Response Model

Daa

Inference Model

Truth Reconstructed

742.3 741.7     7.8 0.72

3.71 3.67    0.11 0.04

Xmax / g cm−2

Nmax / 109

Δ

±

±
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Conclusion & Outlook
• Goal: use Information Field Theory for 1-D reconstruction of longitudinal profile 

• Utilised fast-forward model for radio emission: template synthesis 

• Preliminary results show accurate reconstruction of   and  Xmax Nmax
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Xmax, Nmax

Xmax, Nmax

• Generalise for arbitrary antenna positions (Fourier interpolation) 

• Include antenna response & noise model 

• Apply to realistic simulated data & later to LOFAR data

Outlook

A. Corstanje et al. 2023 JINST 18 P09005
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M. Desmet, ARENA2024

Template Synthesis Spectral Relations for all parameters
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Template Synthesis
Antenna distance dependence of origin amplitude spectrum at different atmospheric slice

Xslice = 800 g cm−2

Xslice = 400 g cm−2

Xslice = 600 g cm−2



• ~ 60,000 antennas planned within ~ 1 km  

• Wide frequency bandwidth from 50 - 350 MHz 

•  reconstruction with SKA simulations show resolution of 6-8  (LOFAR: 20 ) 

• Also possible to reconstruct L, R parameters, double-bump showers & possibly PeV gamma-rays (  P. Laub)

2

Xmax g cm−2 g cm−2

→

Square Kilometre Array

S. Buitink, ARENA 2024

Reconstruction of full air shower profile possible with Square Kilometre Array (SKA)

S. Buitink, ARENA 2024


