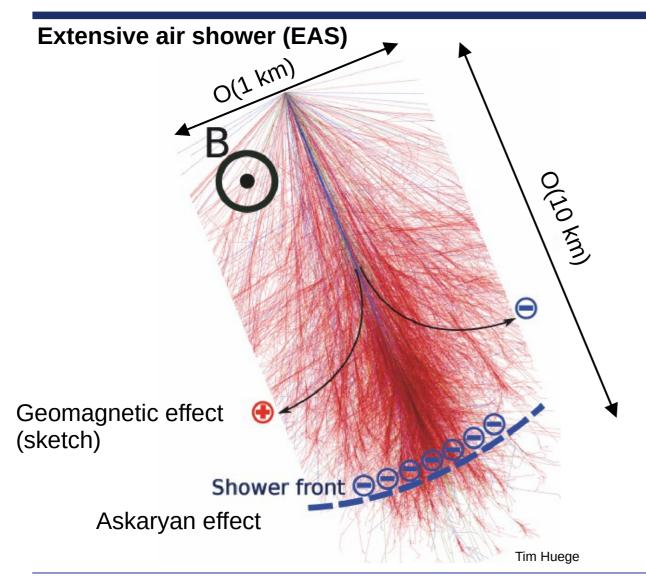
Friedrich-Alexander-Universität Erlangen-Nürnberg

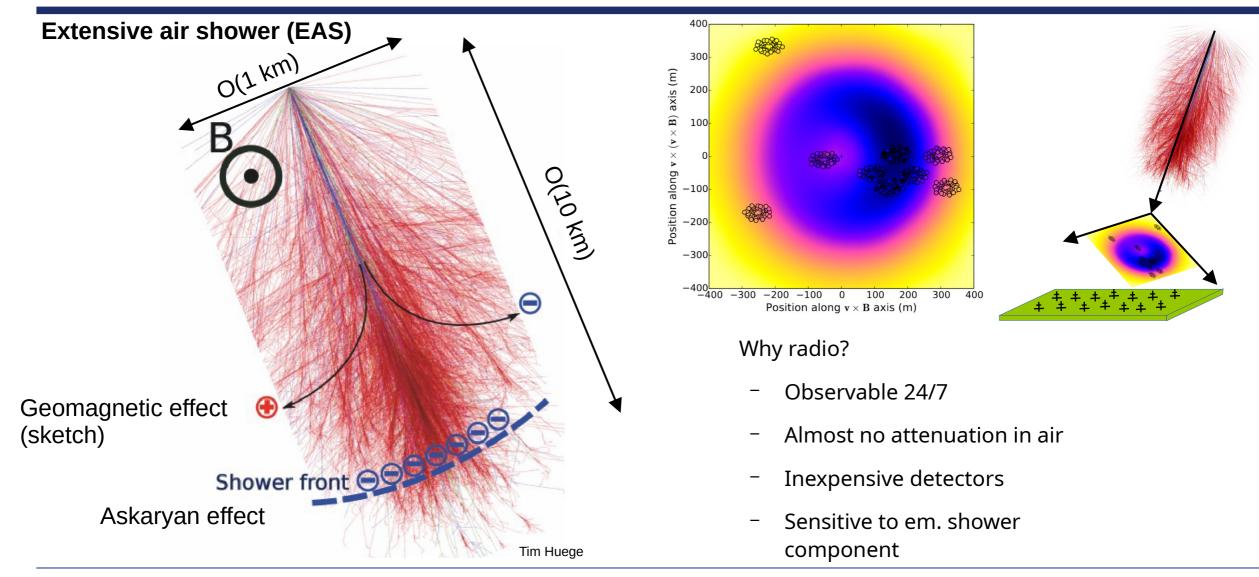
4D Air Shower Reconstruction and Radio Detection of PeV Gamma-rays with the SKA


Astroparticle School 2024

Speaker: Philipp Laub* Supervisor: Anna Nelles

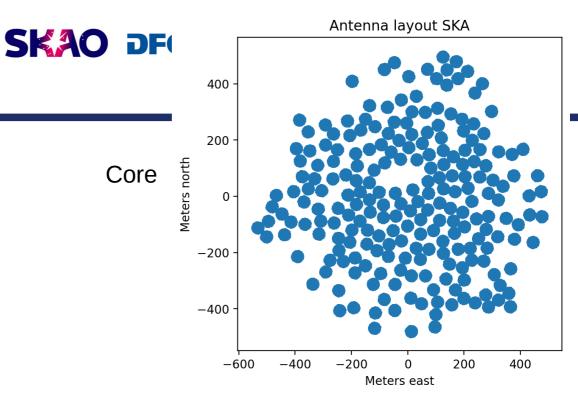
*philipp.laub@fau.de

Radio detection of cosmic particles



Radio detection of cosmic particles

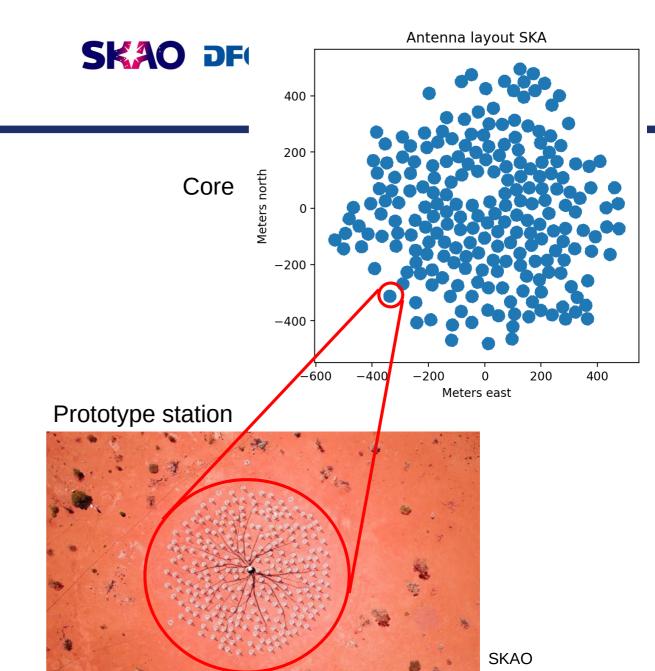
Buitink et al. PoS(ICRC2015)369



Philipp Laub ECAP, FAU 4D Air Shower Reconstruction and Radio Detection of PeV Gamma-rays with the SKA

3

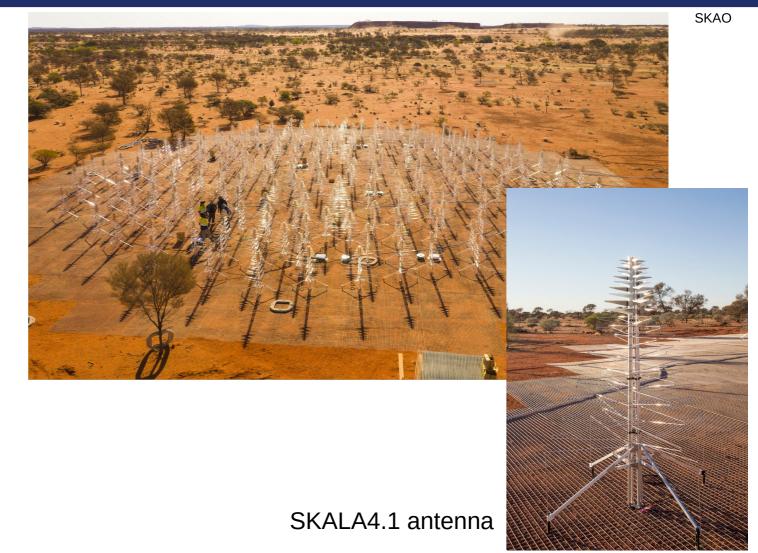
SKA The Square Kilometre Array


- 2 parts (construction started):
 - Mid-frequency array SKA-mid in South-Africa
 - Low-frequency array SKA-low in Western Australia
- SKA-low:
 - 512 stations with 256 antennas each
 - Dense core with 3 spiral arms
 - Core: ~ 57,344 log-periodic antennas
 - Core area: ~ 1 km²
 - Frequency band: 50 MHz 350 Mhz
 - Energy range: 10¹⁶ eV 10¹⁸ eV

4

SKA The Square Kilometre Array

- 2 parts (construction started):
 - Mid-frequency array SKA-mid in South-Africa
 - Low-frequency array SKA-low in Western Australia
- SKA-low:
 - 512 stations with 256 antennas each
 - Dense core with 3 spiral arms
 - Core: ~ 57,344 log-periodic antennas
 - Core area: ~ 1 km²
 - Frequency band: 50 MHz 350 Mhz
 - Energy range: 10¹⁶ eV 10¹⁸ eV



SKA The Square Kilometre Array

SKA-low:

- 512 stations with 256 antennas each
- Dense core with 3 spiral arms
- Core: ~ 57,344 log-periodic antennas
- Core area: ~ 1 km²
- Frequency band: 50 MHz 350 Mhz
- Energy range: 10¹⁶ eV 10¹⁸ eV

SKA-low:

- 512 stations with 256 antennas each
- Dense core with 3 spiral arms
- Core: ~ 57,344 log-periodic antennas
- Core area: ~ 1 km²
- Frequency band: 50 MHz 350 Mhz
- Energy range: 10¹⁶ eV 10¹⁸ eV
- Particle detector (scintillator) array funded!
 - \rightarrow Particle trigger
 - Triggers on muons
 - Robust against radio noise

Prototype SKAPA particle detector

Bray et al. 2020 10.1016/j.nima.2020.164168

• Extremely high antenna density in core

→ High-precision measurements of shower parameters

		1.0	
400 -		- 0.8	
200 -			
		- 0.6 - jy [a.u.]	
0-		- 0.0 - Pulse energy [a.u.	
-200 -		- 0.2	
		0.0	
-400 -200	0 200 400	l	
S. Buitink et al. PoS(ICRC2023)503			

	SKA-low (simulations)	LOFAR
X _{max} resolution	6-8 g/cm ²	20 g/cm ²

A. Corstanje et al., PoS(ARENA2022)024

Philipp Laub ECAP, FAU 4D Air Shower Reconstruction and Radio Detection of PeV Gamma-rays with the SKA

Thesis project: science case

Status of current analyses/reconstruction efforts

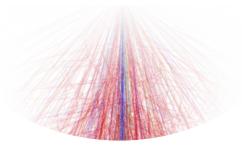
- Radio detectors (LOFAR, future SKA-low,...)
 - Measurement of radio emission from EAS
 - \rightarrow Reconstruction of shower parameters (Xmax, direction, core position, ...)
 - \rightarrow Reconstruction of the properties of the primary particles (energy, type, ...)
- Current analyses:
 - Comparison between measured signals (footprint etc...) and many simulations
 - Time evolution of air showers not considered
- Simulations:
 - Dependent on choice of the hadronic interaction model
 - Very resource-hungry

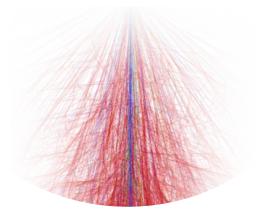
Thesis project: science case

Science case / Project goal

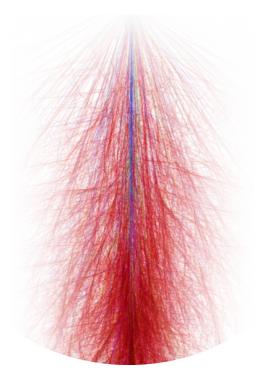
- \rightarrow New reconstruction method:
 - Fast
 - Model-agnostic/model-independent
- Time evolution of air showers (\rightarrow maximum level of detail)
 - \rightarrow 4D (space + time) air shower reconstruction algorithm
- \rightarrow Expectation:
- High-precision reconstructions using SKA-lows vast data abundance
- Independent of hadronic interaction models
- Investigation of air shower physics to unseen depth
 - → "new" physics, e.g. sub-structures?

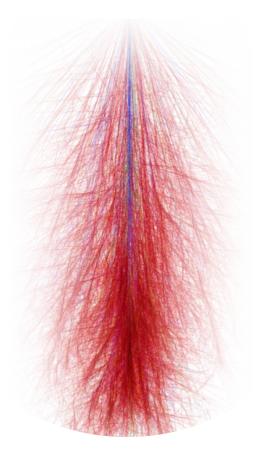
together with **Keito Watanabe** and **Mrinal Jetti**

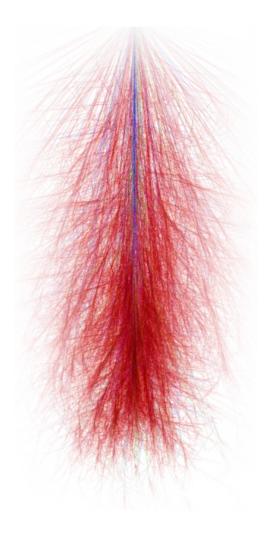


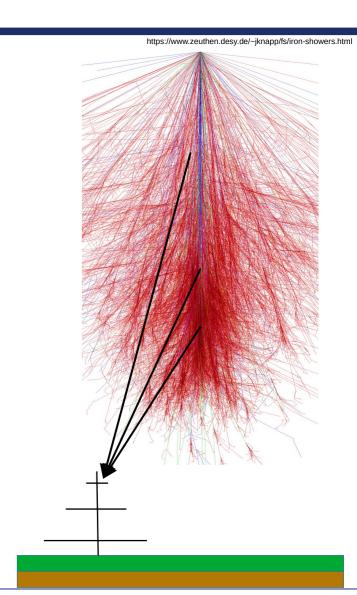












Why is 4D hard?

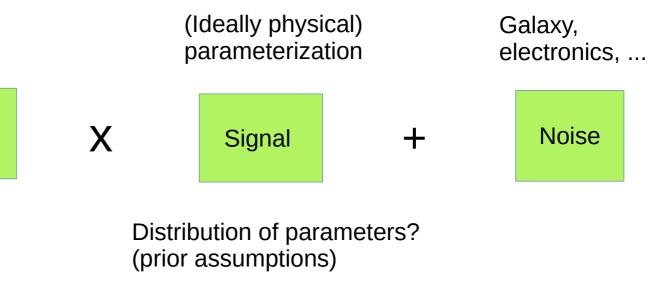
- → Time compression:
- Refractive index in air > 1
- Shower propagation faster than light in air
- Signals from all stages of air shower development arrive at ~ same time
- Single short-timed pulse measured

• Reconstruction using Information field theory (IFT)

Information field theory

Data

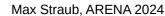
• Framework for bayesian inference developed as a field theory

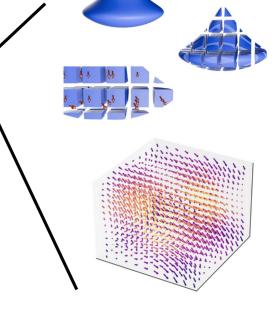

Amplifier, antenna,

System response

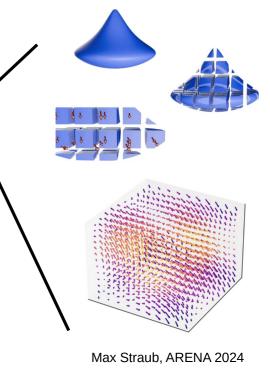
atmosphere, ...

- Extremely large numbers of degrees of freedom
- Physics-informed, based on prior knowledge/assumptions
- Allows reconstructions using minimal information


→ see talk by Mrinal Jetti



- Reconstruction using Information field theory (IFT) \rightarrow see talk by Mrinal Jetti
 - \rightarrow Multiple possible approaches:
 - Template synthesis (model-dependent) → see talk by Keito Watanabe
 - Model-agnostic modelling of microscopic currents in a moving relativistic voxel
 - Artificial Neural Network

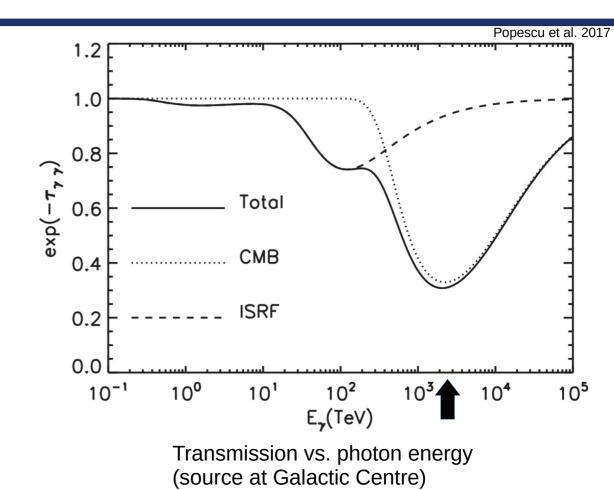


- Reconstruction using Information field theory (IFT) \rightarrow see talk by Mrinal Jetti
 - → Multiple possible approaches:
 - Template synthesis (model-dependent) → see talk by Keito Watanabe
 - Model-agnostic modelling of microscopic currents in a moving relativistic voxel
 - Artificial Neural Network
- Simulation pipeline:

...

- CORSIKA/CoREAS simulations
- SKA-low detector description
- SKALA4 antenna model
 - → test algorithm on "realistic" SKA-low events

Project 2: Gamma ray detection

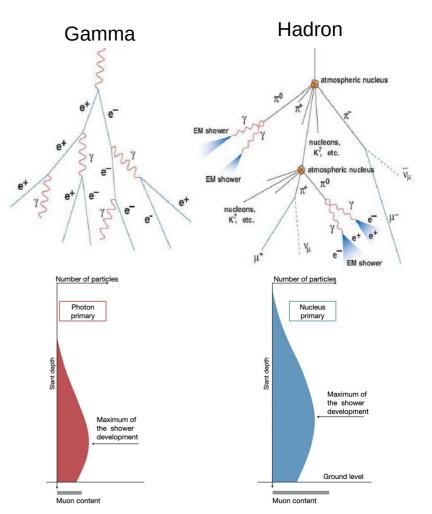


- SKA-low designed for (hadronic) cosmic rays
- Can it be used for UHE gamma-ray detection? (for free!)

Project 2: Gamma ray detection

Challenges

- SKA-low designed for (hadronic) cosmic rays
- Can it be used for UHE gamma-ray detection? (for free!)
 - \rightarrow Challenges:
 - Attenuation of gamma rays due to CMB (and Interstellar Radiation Field (ISRF)) strongest at ~ PeV
 - → Low flux at ultra-high energies where SKA-low is sensitive



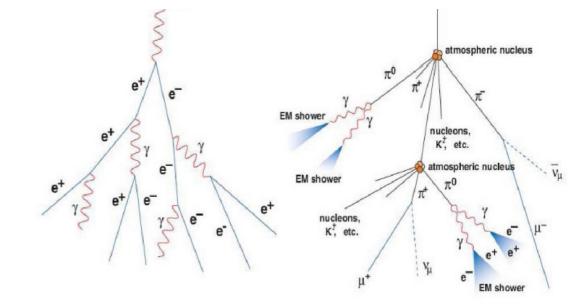
Philipp Laub ECAP, FAU 4D Air Shower Reconstruction and Radio Detection of PeV Gamma-rays with the SKA

Project 2: Gamma ray detection

Challenges

- SKA-low designed for (hadronic) cosmic rays
- Can it be used for UHE gamma-ray detection? (for free!)
 - \rightarrow Challenges:
 - Attenuation of gamma rays due to CMB (and Interstellar Radiation Field (ISRF)) strongest at ~ PeV
 → Low flux at ultra-high energies where SKA-low is sensitive
 - Purely electromagnetic showers
 - \rightarrow Fewer muons expected from gamma ray air showers
 - \rightarrow Particle trigger not effective for gamma ray showers?
 - → Signal trigger required?
 - → Trigger threshold / Minimum energy?
 - → Improvements through IFT / interferometry?

Abreu et. al. https://arxiv.org/abs/2209.05926


Philipp Laub ECAP, FAU 4D Air Shower Reconstruction and Radio Detection of PeV Gamma-rays with the SKA

Project 2: Gamma ray detection

Challenges

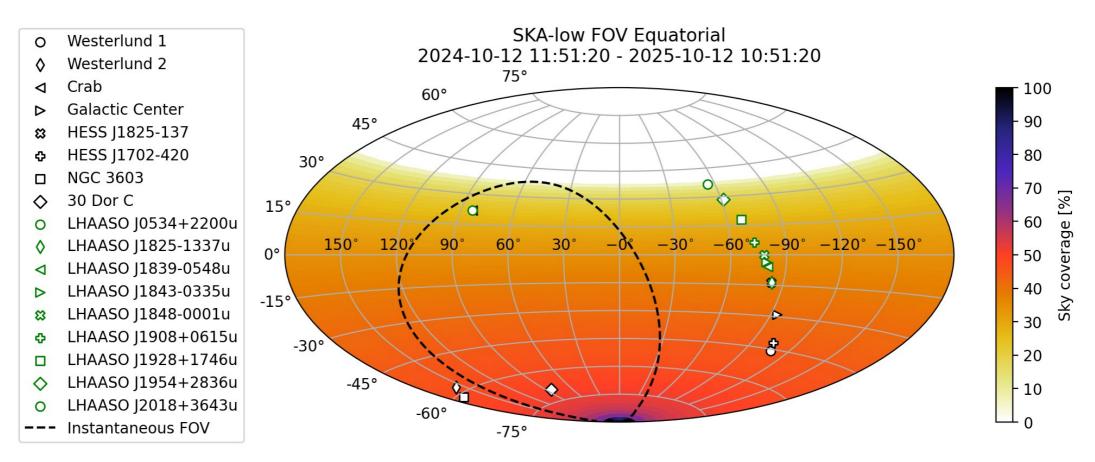
- SKA-low designed for (hadronic) cosmic rays
- *Can it be used for UHE gamma-ray detection?* (for free!)
 - \rightarrow Challenges:
 - Attenuation of gamma rays due to CMB (and Interstellar Radiation Field (ISRF)) strongest at ~ PeV
 - \rightarrow Low flux at ultra-high energies where SKA-low is sensitive
 - Purely electromagnetic showers
 - \rightarrow No/few muons expected from gamma ray air showers
 - \rightarrow Particle trigger not effective for gamma ray showers
 - \rightarrow Signal trigger required
 - → Trigger threshold / Minimum energy?
 - \rightarrow Improvements through IFT / interferometry?
 - Large (hadronic) cosmic ray background
 - \rightarrow Gamma hadron separation

Veto with particle (muon) detector?

SKAO DFG Deutsche Forschungsgemeinschaft

Alicia López-Oramas 10.13140/RG.2.1.4140.4969

Project 2: Gamma ray detection


Challenges

- SKA-low designed for (hadronic) cosmic rays
- Can it be used for UHE gamma-ray detection? (for free!)
 - \rightarrow Challenges:
 - Attenuation of gamma rays due to CMB (and Interstellar Radiation Field (ISRF)) strongest at ~ PeV
 - \rightarrow Low flux at ultra-high energies where SKA-low is sensitive
 - Purely electromagnetic showers
 - \rightarrow No/few muons expected from gamma ray air showers
 - \rightarrow Particle trigger not effective for gamma ray showers
 - \rightarrow Signal trigger required
 - → Trigger threshold / Minimum energy?
 - \rightarrow Improvements through IFT / interferometry?
 - Large (hadronic) cosmic ray background
 - → Gamma hadron separation
 - Observable UHE gamma ray sources?

SKA-low field of view (FOV): (assume that SKA can see sources up to 65 degree zenith angle, 1 year)

 \rightarrow Several LHAASO sources (some reported to emit up to few PeV gammas)

- SKA currently under construction
 - High antenna density
 - Extreme precision measurements
- Goal: 4D air shower reconstruction (WIP)
 - Multiple possible approaches (model-agnostic, model-dependent, ANN)
 - IFT
 - More insights into air shower physics expected
- Radio detection of gamma rays with SKA (WIP)
 - Several challenges: Trigger, CR background, low flux at ultra-high energies

- SKA currently under construction
 - High antenna density
 - Extreme precision measurements
- Goal: 4D air shower reconstruction (WIP)
 - Multiple possible approaches (model-agnostic, model-dependent, ANN)
 - IFT
 - More insights into air shower physics expected
- Radio detection of gamma rays with SKA (WIP)
 - Several challenges: Trigger, CR background, low flux at ultra-high energies

Thank you for your attention!