Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät





# Signal Identification & **Reconstruction** using Correlation Sjoerd (👞 rd) Bouma

April 5, 2024 **FCAP** 

# Who am I?



### – Sjoerd $\approx$ 👞 rd

- PhD student at Erlangen Centre for Astroparticle Physics (ECAP)
- Part of the Radio Neutrino Observatory in Greenland (RNO-G)
- My work: reconstruction of (simulated) neutrino signals





Two common challenges in time-series data:

- 1. Identifying a signal within a noisy time trace of recorded data
- 2. Reconstructing the arrival direction of the signal
- Mostly focus on (2.), though there is often some overlap between both.
- Most examples taken from radio astronomy
- I'm not necessarily an expert! Very interested to hear how you tackle similar problems in your experiment/field.

4/21

- N antennas measure a signal coming from somewhere
- How can we tell a signal has been measured?

ECAP

**Problem sketch** 

How do we know where the signal came from?





- One option is to use **interferometry**
- The signal arrives at antennas separated by  $\Delta \vec{x}$  with a relative time delay:

### $\Delta t = \vec{v} \cdot \Delta \vec{x},$

- Assuming some direction  $\vec{v}$ , we can sum the signal in different antennas:
  - Signal sums coherently  $\rightarrow \times N$
  - Noise is incoherent  $\rightarrow \times \sqrt{N}$
- $\Rightarrow$  SNR increases with factor  $\sqrt{N}$



 $\frac{D\sin\theta}{\tau_{
ho}}$ 



## April 5, 2024 6 / 21

2000

- Signal sums coherently  $\rightarrow \times N$ 
  - Noise is incoherent  $\rightarrow \times \sqrt{N}$
- $\Rightarrow$  SNR increases with factor  $\sqrt{N}$

- Assuming some direction  $\vec{v}$ , we can sum the signal in different antennas:
- $\Delta t = \vec{v} \cdot \Delta \vec{x},$
- The signal arrives at antennas separated by  $\Delta \vec{x}$  with a relative time delay:

## - One option is to use **interferometry**



500

0

1000

Sample

1500



- Instead of using a known direction to improve SNR, can also invert this:
- Scan over possible directions and pick  $\Delta t$  that maximizes the amplitude.
- This gives a handle on the arrival direction of the signal





Advantages:

- Don't need an explicit signal model
- Computationally very cheap Disadvantages:
- To maintain coherence, need a timing resolution better than  $1/(2f_{\text{max}})$  (though we can still do intensity interferometry for time-varying signals even if this is not satisfied)
- Signal needs to look similar in all antennas
- Need to correct for non-uniform antenna gain pattern







**Cross-correlation** 

An alternative approach is cross-correlation:

$$ho_{i,j}(\Delta t) = \sum_t V_i(t) V_j(t + \Delta t)$$

- If both  $V_i$  and  $V_j$  contain the same signal shifted by  $\Delta t'$ , expect a peak in  $\rho_{i,j}$  when  $\Delta t = \Delta t'$
- Often normalize by dividing by  $\sigma_i \sigma_j$  such that  $-1 \le \rho_{i,j} \le 1$ .







## **Cross-correlation**

- If both voltages contain noise, we are mostly correlating 'noise with noise'
- Can improve on this somewhat by \_ bandpass-filtering, i.e. filtering out frequencies with mostly noise contributions
- However, reducing bandwidth also increases maximum correlation of noise with noise.



1000

Sample

1500

50

0

500

-25

25 V1 [mV]

0 -25

V<sub>0</sub> [mV] 25

<sub>0,1</sub>(Δ<sub>t</sub>) [a.u.] 0.02 0.00

-0.02



2000

## Template correlation

- Better correlating noisy data with noiseless template
- Need a template that describes the signal (relatively) well
- Can use multiple templates to (try to) account for variation in the signal.







- Template correlation in the time-domain works well for approximately gaussian ( $\approx$  white) noise
- If the noise spectrum  $S_n(f)$  is not white, can use correlation in frequency domain instead (e.g. gravitational wave template searches):

$$ho(t) = 4Re\int df rac{ ilde{V}_i(f) ilde{h}^*(f)}{S_n(f)}e^{2\pi i f t}df$$

#### Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät





# Neutrino reconstruction



- In-ice shower initiated by UHE neutrino develops a negative charge excess at the shower front, giving rise to Askaryan radiation.
- At radio wavelengths (O(100 1000) MHz), **coherent** emission close to **Cherenkov angle** ( $\sim 56^{\circ}$ )
- At energies > 10 PeV, strong enough to detect at  $\mathcal{O}(1)$  km distances in-ice radio detector for neutrinos!
- e.g. RNO-G in Greenland; ARIANNA, ARA, IceCube-Gen2 (?) in Antarctica





- The **first** step in reconstructing the neutrino is finding the source of the emission: the **neutrino interaction vertex**
- Use template correlation
- Challenges:
  - Ice refractive index changes  $\Rightarrow$  radio waves 'bend downwards'.



- The **first** step in reconstructing the neutrino is finding the source of the emission: the **neutrino interaction vertex**
- Use template correlation
- Challenges:
  - Ice refractive index changes  $\Rightarrow$  radio waves 'bend downwards'.
  - This leads to a 'shadow zone'.







- The **first** step in reconstructing the neutrino is finding the source of the emission: the **neutrino interaction vertex**
- Currently one of the dominant limitations for neutrino reconstruction (2302.00054)
- Use template correlation
- Challenges:
  - Ice refractive index changes  $\Rightarrow$  radio waves 'bend downwards'.
  - This leads to a 'shadow zone'.
  - Signal not visible in all antennas!



-40m

-60m

-80m

-90m

-100m



17/21

- Use a single template, compute correlation  $\rho_i(t)$  for each channel *i*;
- Take absolute value (to account for polarity)





- Use a single template, compute correlation  $\rho_i(t)$  for each channel *i*;
- Take absolute value (to account for polarity)
- To determine  $\Delta t$ , multiply them together:

$$ho_{i,j}(\Delta t) = \max_t (|
ho_i(t)||
ho_j(t+\Delta t)|)$$





- Use a single template, compute correlation  $\rho_i(t)$  for each channel *i*;
- Take absolute value (to account for polarity)
- To determine  $\Delta t$ , multiply them together:

$$\rho_{i,j}(\Delta t) = \max_t (|\rho_i(t)||\rho_j(t + \Delta t)|)$$

- Finally, use a lookup table to convert a vertex position  $\vec{x}$  to expected time delays  $\Delta t$ 







- Fit  $\vec{x}$  by maximizing total correlation over all antenna pairs i, j
- To avoid local minima, use an iteratively refined brute force search.





- This works well at high enough SNR, and if the signal is visible in all antennas
- At low SNR, this algorithm will **bias** towards vertex position visible in all antennas (because *some*  $|\rho|$  is more than *no*  $|\rho|$ )
- $\Rightarrow\,$  need to account for the possibility of 'no signal'



- This works well at high enough SNR, and if the signal is visible in all antennas
- At low SNR, this algorithm will **bias** towards vertex position visible in all antennas (because *some*  $|\rho|$  is more than *no*  $|\rho|$ )
- $\Rightarrow\,$  need to account for the possibility of 'no signal'
- Current strategy: median-subtraction:

$$ho_{i,j}'(\Delta t) = \max\left\{0, 
ho_{i,j}(\Delta t) - ilde{
ho}_{i,j}
ight\}$$



- This works well at high enough SNR, and if the signal is visible in all antennas
- At low SNR, this algorithm will **bias** towards vertex position visible in all antennas (because *some*  $|\rho|$  is more than *no*  $|\rho|$ )
- $\Rightarrow\,$  need to account for the possibility of 'no signal'
- Current strategy: median-subtraction:

$$ho_{i,j}'(\Delta t) = \max\left\{0, 
ho_{i,j}(\Delta t) - ilde{
ho}_{i,j}
ight\}$$

- Question: can we do something better?
- E.g. minimum correlation threshold for inclusion in fit, machine learning magic, ...?





- Discussed two ways to use multiple antennas to find the source of a signal:
  - 1. Interferometry (beamforming): coherently combining signal from N antennas increases SNR by  $\sqrt{N}$ ;
  - 2. Cross-correlation: using a template can identify a signal even at low SNR
- For neutrino reconstruction, use template correlation
- This is one of the dominant limits for radio neutrino reconstruction
  - Not all antennas have signal reconstruction bias ('finding signal where there is none')
- Question to the audience: how do you deal with this problem (source reconstruction, signal identification) or these techniques (interferometry, correlation) in your experiments?

#### Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät





# Backup

# Recap: radio neutrinos



- In-ice shower initiated by UHE neutrino develops a negative charge excess at the shower front, giving rise to Askaryan radiation.
- At radio wavelengths (O(100 1000) MHz), **coherent** emission close to **Cherenkov angle** ( $\sim 56^{\circ}$ )
- At energies > 10 PeV, strong enough to detect at  $\mathcal{O}(1)$  km distances in-ice radio detector for neutrinos!
- e.g. RNO-G in Greenland; ARIANNA, ARA, IceCube-Gen2 (?) in Antarctica



- Three steps:

- 1. **Signal direction** direction of **emission** at the shower vertex
- 2. Viewing angle angle between the neutrino and the emitted signal
- 3. Polarization points towards the shower axis







– Three steps:

1. Signal direction: from 'triangulation'



- Three steps:

- 1. Signal direction: from 'triangulation'
- 2. **Viewing angle**: from shape of spectrum the emission **loses coherence** further from the Cherenkov angle, with the higher frequencies losing coherence first.





Three steps:

- 1. Signal direction: from 'triangulation'
- 2. **Viewing angle**: from shape of spectrum the emission **loses coherence** further from the Cherenkov angle, with the higher frequencies losing coherence first.
- 3. **Polarization**: from different antennas ('Vpol' and 'Hpol')



air





This is what it looks like...

 - ...for a single neutrino: a small 'ellipse' on-sky.





This is what it looks like...

 - ...for a single neutrino: a small 'ellipse' on-sky.



 - ...for a **source** with multiple neutrinos detected ('point spread function').



#### Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät





# Performance

Test case:

- IceCube-like flux + GZK
- RNO-G-like detector:
  - Three strings on a triangular grid
  - Trigger (phased array of 4 Vpols) and Hpol antennas at  ${\sim}100$  m to maximize sensitivity
  - 3 additional upper Vpols for increased baselines
- Include both hadronic and electromagnetic showers
  - Electromagnetic showers at ultra-high energies more irregular (LPM effect) - harder to fit, & algorithm designed for hadronic showers.





## Results









### 1. Signal direction (vertex reconstruction) limits successful reconstructions

 Mostly (but not exclusively) at low SNR, failure to reconstruct the shower maximum results in 'bad' overall reconstruction.







### 2. Polarization resolution is the dominant uncertainty

 Larger phase space & relatively less sensitive Hpol antennas lead polarization to dominate the angular uncertainty.



# April 5, 2024

11/23

### Results

- 3. Uncertainty contours are strongly asymmetric
- Dominant polarization uncertainty results in \_ elongated ellipses.
- This means the 1D 'space angle' strongly overestimates the actual uncertainty!





### Results

# 3. Uncertainty contours are strongly asymmetric

- Dominant polarization uncertainty results in elongated ellipses.
- This means the 1D 'space angle' strongly overestimates the actual uncertainty!
- E.g. median resolution for HAD, analysis cut: 4.9° (space angle) vs. 17  $\rm deg^2\approx 2.4^\circ$  1D-equivalent.





## Conclusions

- 1. We **can reconstruct neutrinos** with a deep in-ice radio detector! (Now we just need to find some...)
- 2. Resolution limited by vertex and polarization reconstruction
- 3. Uncertainty contours are asymmetric **can not just quote a space angle**!
  - Single event ellipse
  - Point spread function bow tie
- 4. Improvements expected!
  - Improve vertex reconstruction by better pulse finding at low SNR?
  - Dedicated algorithm for electromagnetic showers?
  - Machine learning?

- ...



direction



## **Example reconstruction**





## Systematic uncertainties







# Zenith and energy dependence







- Shape of the PSF depends on local zenith
- Orientation of the polarization direction geometrically constrained  $\rightarrow$  bow-tie shape
- Area larger than single event contour, but smaller than for a symmetric  $\mathsf{PSF}$







## Discovery potential

- Can study the source discovery potential for a source at a declination of  $20^\circ$
- Shown normalized to 'all events' lower is better
- At  $\leq$  expected background flux, number of events detected is much more important than resolution.





#### Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät





# The algorithm



- Unfolding: invert the detector response & propagation effects, and fit the electric field
- Advantage: (Askaryan) model-independent
- But: inflates noise where detector response is weaker, hard to combine information from multiple antennas





- Forward-folding: for each direction hypothesis, take the electric field and forward-fold it with expected effects from propagation & detector response.
- Fit to measured voltage traces.
- Improved accuracy compared to standard unfolding, especially at low SNR  $^1$



- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation





- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation
- Maximize total correlation over all channels in iterative grid search





- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation
- Maximize total correlation over all channels in iterative grid search





- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation
- Maximize total correlation over all channels in iterative grid search





- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation
- Maximize total correlation over all channels in iterative grid search
- → Ice model + ray type + vertex position determine signal direction





# Step 2: Find pulses

- Use emission vertex as input for the direction reconstruction.
- Exact pulse arrival times not known due to uncertainties in vertex, ice model, group delays...
- At low SNR, end up fitting random noise fluctuations.
- $\rightarrow\,$  identify approximate pulse windows, and include only those with amplitude  $> 3.5\sigma_{\rm noise}$







For each viewing angle, polarization and shower energy hypothesis:

- Forward-fold expected electric field with propagation & detector effects
- Determine exact pulse arrival time within each pulse window using correlation
- Compute

$$\chi^{2} = \sum_{n=1}^{n_{\text{pulses}}} \sum_{i=1}^{n_{\text{samples}}} \frac{(x_{i} - f_{i}(\theta_{\text{view}}, \phi_{\text{pol}}, E_{\text{sh}}))^{2}}{\sigma_{\text{noise}}^{2}}$$

ightarrow Obtain neutrino properties that minimize  $\chi^2$ 

