Analysis of first KM3NeT/ORCA data

J. Schumann July 29, 2019 FRANCI 2019, Erlangen

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Overview

- **KM3NeT**: Water Cherenkov detector in the Mediterranean Sea
- Detector is split up and deployed at two sites:
 - \rightarrow ARCA Astroparticle research
 - → ORCA Neutrino oscillation research 8 Mton instrumented mass
- Current project status:
 - \rightarrow Deployment for Phase-1 (7 DUs)
 - → Four detection units (DU) installed and taking data
- \Rightarrow First data available \rightarrow **Data Analysis**

KM3NeT detector

Detection Unit & Reconstruction

Detection Unit:

18 DOMs, 31 photomultipliers each

- Dataset Livetime 1 DU \rightarrow 82 days 2 DUs \rightarrow 17 days
- Event Reconstruction:
 - → Maximum likelihood method for track hypothesis using PDFs generated from Monte-Carlo simulations
- Task:
 - → Search for neutrino candidates requires dedicated event selection

Analysis Details & Event Selection Cuts

FRIEDRICH-ALEXANDER **ERLANGEN-NÜRNBERG**

Reconstructed Events

• Problem:

- ightarrow Event rate dominated by atmospheric down-going muons
- \rightarrow Rate of 'up-going', i.e. mis-reconstructed, muon events still $\sim 10^4$ higher than actual neutrino event rate
- **up-going** events \rightarrow Neutrino events

Zenith distribution of all reconstructed events

Event Topology

• Event trigger:

large clusters of causally connected detected photons at the PMTs (hit)

- Search for hit patterns of up-going events
- Identification of (spacial) characteristics for event selection

Simulated atmospheric muon event

Simulated neutrino event

Data / Monte-Carlo comparison

• Data is in good agreement with Monte-Carlo simulations

Geometrical Cuts

- Require reconstructed tracks close to the DU(s)
- Horizontal muon tracks below the DU(s) create (also) up-going patterns

Mean height of tiggered hits

Cut: $\langle z_{trg} \rangle > 40 \,\mathrm{m}$

Radial distance of the reco. vertex

Cut: $r_{vtx} < 20 \,\mathrm{m}$

Likelihood / Reconstruction Cuts

- Check likelihood value of best up-going solution
- Other cuts:
 - → Likelihood value difference between best up- and down-going solution
- Possible improvements:
 - → Use likelihood value normalised to number of degrees of freedom

Likelihood of best up-going solution **Cut:** $Q_{up} > 40$

Resulting Zenith Distribution

Analysis	Initial events	ν Candidates (MC)	Mis-reco. muons in MC	Rate
1DU	$1.4 imes 10^7$	17(5.2)	1	0.2 / day
2DU	$5.0 imes10^{6}$	43(1.4)	0	2.5 / day
2DU (min. muons)	$5.0 imes10^{6}$	81(5.22)	0	4.8 / day

Final Remarks / Outlook

• Event reconstruction with one/two DUs

\rightarrow Neutrino identification possible

- \rightarrow Features for Sparking PMTs and Bioluminesence effects needed
- No blinding \rightarrow Main goal: understanding the detector
 - \Rightarrow Focus on geometrical cuts
- Current status:
 - ightarrow Preliminary Results
 - \rightarrow Start from other ongoing collaboration analysis (cross-check)
 - \rightarrow **Most promising:** Arrival time residual w.r.t. reco. hypothesis
- Outlook:
 - \rightarrow Use also the four installed DUs
 - \rightarrow Development of (new) cut features on-going

Thank you for your attention!

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Backup

Neutrino Candidate

Run: 4919, EventId: 12281, $cos(\Theta) = 0.56$

Reconstuction Hit Selection

Run: 4897, EventId: 24439, $\cos(\Theta) = 0.19$

Sparking PMT

Run: 5004, EventId: 22573, $cos(\Theta) = 0.87$

Bioluminesence

Run: 4814, EventId: 7878, $cos(\Theta) = 0.74$

Misreconstructed muon candidate

Run: 4893, EventId: 6095, $cos(\Theta) = 0.95$