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Microscopic

et oo RG 1N perturbation theory

Safety, Dynamical
Triangulations

Initial only the finitely many beta functions that are

condition _ _
related to the relevant couplings are considered

Callan (1970), Symanzik (1970)

The RG

Effective action
Exact RGE Functional RGE

Wilsonian Exact RG Functional RG

the quantum fluctuations in the path integral scale-dependent version of the effective action,
can be integrated out progressively the Effective Average Action
Wilson (1971), Kadanoff (1966) Wetterich (1991)

Reuter and Wetterich (1994)
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Functional RG in a nutshell

Alternative
manipulation of the
path integral fully independently of the bare action.

- Implement the underlying RG idea already at the level of the EAA,

Generating functional 2 -

Weld] =tog [ Db exp (5161 - 28110+ [ ates(@)ito))

->

Smooth cutoff

ASd) = 5 [ A% d()Ru(-D)(a)

RG kernel: kz for p2 & kz

mass-like IR Ri(p?) = { ) . 2

regulator 0 for p°>k I —
k> 2k?

Legendre transform Effective Average Action

~ ~

Lrlo] = / Az Ji[o)(x)(x) + Wi[Jk[¢]] — Tilg] = Tk[s] — ASi[g] = / A"z J(2)p(x) + Wi[d] — ASy[¢)
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The EAA Tkl¢

It represents the scale- It satisfies the
dependent version of Functional
the standard effective Renormalization Group
action. Equation:
IR uv 1 _ (2) _
—1
}—|—<—<—<% k@krk[¢] — 5 1r (Fk -+ Rk) k@kRk
p?=0 Kk? p? =0 ] ]
IimI'y — T lim T'), — S - UV- and IR finite
k—0 k—o00 - -
* Fully nonperturbative or exact

Predictive solutions do
exist in theories that
are otherwise
perturbatively non-
renormalizable.



The geometrical setting




The geometrical setting

THEORY SPACE

space of functionals over which the EAA is T
supposed to be defined.




The geometrical setting

THEORY SPACE

space of functionals over which the EAA is T
supposed to be defined.

BASIS ON THEORY SPACE

®.@)
expansion of the elements of theory space in ~ A[¢] = Z U'P;[¢)
basis functionals and coupling constants. i1




The geometrical setting

THEORY SPACE

space of functionals over which the EAA is T
supposed to be defined.

BASIS ON THEORY SPACE

®.@)
expansion of the elements of theory space in ~ A[¢] = Z U'P;[¢)
basis functionals and coupling constants. i1

RG TRAJECTORY Al
®

T, B}

vector field on theory space.



The geometrical setting

THEORY SPACE

space of functionals over which the EAA is T
supposed to be defined.

BASIS ON THEORY SPACE 00

expansion of the elements of theory space in ~ A[¢] = Z U'P;[¢)

basis functionals and coupling constants. i1

RG TRAJECTORY Ald]
{T7 5} ®

vector field on theory space.

RG FLOW
pair of theory space and RG trajectories. k— 1y



The geometrical setting

THEORY SPACE

space of functionals over which the EAA is T
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BASIS ON THEORY SPACE 00

expansion of the elements of theory space in ~ A[¢] = Z U'P;[¢)

basis functionals and coupling constants. i1

RG TRAJECTORY Al

vector field on theory space. T, 65} s
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RG FLOW

pair of theory space and RG trajectories. k— Tz
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Gaussian FP: the scaling exponent

agrees with the canonical mass

dimension (generally 1. = 0)

Non-Gaussian FP (interacting, UV FP):
at least one of the scaling exponents

differs from the canonical mass

dimension (1! # 0)

B'j(u.) = 0; 8 ()

They encode physical
information about the
universality class of the
system and its scaling
(observable) behavior.
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Asymptotic Safety

A LA EFFECTIVE AVERAGE ACTION

nonperturbative renormalization &
predictivity

a mechanism which renders physical scattering amplitudes
finite (but non-vanishing) at energy scales exceeding the
Planck scale.

UV critical

surface
Renormalization consists In

constructing a complete trajectory, a
trajectory which lies entirely within

theory space.

UV critical surface: surface spanned by

the eigenvectors of relevant couplings. Predictivity: if the UV critical surface

has the finite dimension, it is sufficient to
Couplings: perform only a finite number of
Relevant: grow inthe IR Re 6; > 0 measurements in order to uniquely

Irrelevant: shrink inthe IR Re 6; < 0 identify Nature’s RG trajectory.
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Nonperturbative ;
approximate Fk[Qb]:ZU(/{)P

solution
_1 o]

N
| 1
kOp >  U'(k)P;[¢] = > T Z U'(k)YPP[¢] + Rie | kDR

LHS: beta functions

RHS: Evaluate the trace using heat kernel techniques

- Compare term by term the coefficients multiplying the same operator
- Solve analytically/numerically the differential equations

Derivative A natural ordering principle for the interaction terms entering into the EAA
expansion is provided by their number of derivatives.
What has been done? up to order RA72 with matter different carrier fields

Reuter, Saueressig, Percacci, Falls, Litim, Eichhorn,...



The Program

Choose a (different)
truncation

Project the RG equation

Compute the fixed point’s
UV critical hypersurtace

on the truncated space

Determine the critical

Compute the
resulting flow

exponents and subspace -

of relevant directions

No

|

Truncation reliable
(test by analysis of scheme (in-)
dependence of universal
quantities, etc.)?

Search for fixed points

Yes [ StOp}
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Background independence

Approaches which

literally

do not employ

a gravitational
background in any way.

The dynamica

quantized on t

Approaches which self-
consistently fix a gravitational
background by invoking the
fundamental dynamical laws.

Background field method

degrees of freedom are

Nis background.

The background is re-adjusted in such a

way that it becomes self-consistent,

meaning that the expectation value of the

fluctuation vanishes.

Juv — <§,UJ/> —3 §;w =+ h,ul/

(B =0 <= (Gu)g = Guv  for

0
0hyu ()

Ly [h; g]

h=0, g=g(k)"
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', /dda:\/§(R — 2A(k)) + gauge fixing + ghosts

kOrgr = 59(97 )‘) 69(9*7 )\*) = 0
KOk A\, = 5)\(97 )‘) 6)\(9*7 )\*) =0

Non-trivial fixed point.

0.5 Complete trajectories. g\izgﬂPTOTIC

Finite number of
relevant directions.

Reuter (1996)
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Euclidean vs. Lorentzian

Integrating out dofs

Problem set 1

The FRG as a
machinery

Problem set 2

Timelike-spacelike: no distinguished ordering of the modes with a
standard canonical status is given.

State dependence - Observer dependence

Obtain RG trajectories on a theory space which is constituted of
functionals that are constructed on Lorentzian metrics.

One can work out a Lorentzian heat kernel proper time regularization.

Analyze the flows of hyperbolic kinetic operators, typically of the

d’Alembertian in the background of the running self-consistent metrics.

RF, Reuter (2022)
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Two options.

Construct relational observables as additional
operators

after gauge-fixing include matter (physical reference
frame) in the EAA

Kevin Falls, RF (2022)
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volume of some submanifold, the geodesic which usually are not taken into account in

distance) or relational quantities at the a truncated EAA.

quantum level?

L
In order to obtain information regarding an CO m pos Ite Compute its correlation functions by

arbitrary operator one can couple it to an taking functional derivatives with

external source. O pe ratO rs
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Covariant formulation

Construct a physical coordinate frame
e.g. by adding matter fields

S.1.

perform a diffeomorphism
transformation

transform the tensor transform the physical frame
R(z) — @ * R(z) X — ¢ 1(X)

composed transformation leaves
the tensor invariant

R(X) = ¢ xR(p™ (X)) = R(X)
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fields

Construct the
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Physical coordinate system

Introduce a . _ [ _ gt
dynamical ¢ (x) = {glw, matter fields} Frame fields: S () = OuX (x)
fields

Invariant volume element: e = det eﬁ

Construct the

Courdinate  X'(z) = XM(¢(z),00(x), ) 5(X(#),2) = é(x) 6(2, X (z))

frame
[ _ Al
A point is XH(z) =2
labelled by
the values /A\
that the = XH(2)

coordinate
system take
at x.
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