Testing gravity on cosmological scales with gravitational waves

Isabela S. Matos

Postdoc @ IFT-UNESP & ICTP-SAIFR

isabela.matos@unesp.br

High-energy astrophysics in the multi-

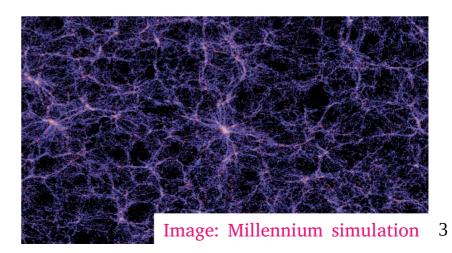
messenger era, 2023

What will I talk about?

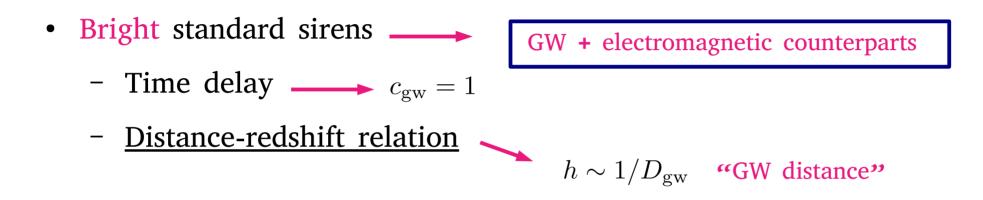
Gravitational waves (GWs)

 Tiny wave-like distortions in the space-time (~10⁻²²) caused by extreme events

What will I talk about?


Gravitational waves (GWs) ______

 Tiny wave-like distortions in the space-time (~10⁻²²) caused by extreme events



the cosmological model

- $\Lambda CDM \longrightarrow H_0$
- Its extensions like from Modified Gravity

Some methods for GW cosmology

Some methods for GW cosmology

 $h \sim 1/D_{\rm gw}$ "GW distance"

- Bright standard sirens _____ GW + electromagnetic counterparts
 - Time delay $\longrightarrow c_{gw} = 1$
 - Distance-redshift relation
- Dark standard sirens
 - Assuming model for distribution of mergers
 - Cross-correlating with galaxy catalogs

Some methods for GW cosmology

 $h \sim 1/D_{\rm gw}$ "GW distance"

- Bright standard sirens _____ GW + electromagnetic counterparts
 - Time delay $\longrightarrow c_{gw} = 1$
 - <u>Distance-redshift relation</u>
- Dark standard sirens
 - Assuming model for distribution of mergers
 - Cross-correlating with galaxy catalogs
- Stochastic GW Background

Other methods: strongly lensed GWs, reconstruction of velocity field ...

GW distance-redshift relation in modified gravity

 $z imes D_{\mathrm{gw}}(z)$

Electromagnetic signal GW

• The Einstein Telescope might see hundreds of bright sirens

GW distance-redshift relation in modified gravity

$$z imes D_{\rm gw}(z)$$

Electromagnetic signal GW

 $M_*^2 \propto rac{1}{G_{
m eff}}$

- The Einstein Telescope might see hundreds of bright sirens
- A time-dependent effective Planck mass changes the GW distance

 $D_{\rm gw}(z) = D_L(z) \sqrt{\frac{M_*^2(0)}{M_*^2(z)}}$ Amendola et al. (2018)

This signature also appears in the SGWB

Lobato, Matos, Calvão, Waga (2022)

Gravitational slip

• The GW speed and the Planck mass running split the two gravitational potentials

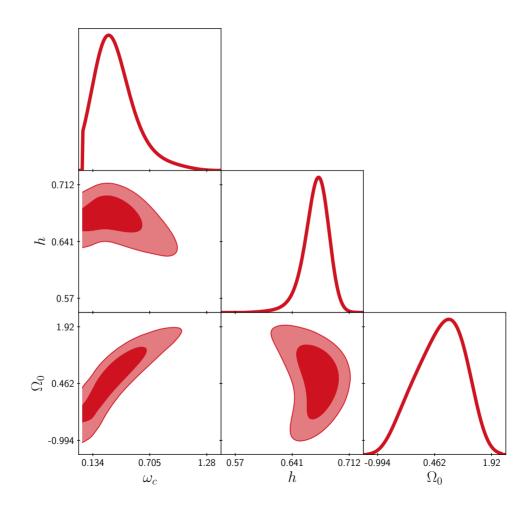
$$\Phi \neq \Psi$$
 Like an anisotropic stress

- Gravitational slip \rightarrow equals unity in GR (late times) $\eta := \frac{\Phi}{\Psi} \rightarrow$ observable from large-scale structure (LSS)
- The combination of GW data with slip measurements can constrain modified gravity Saltas et al. (2014)

Matos, Bellini, Calvão, Kunz (2023)

Matos, Calvão, Waga (2021)

1000 standard sirens

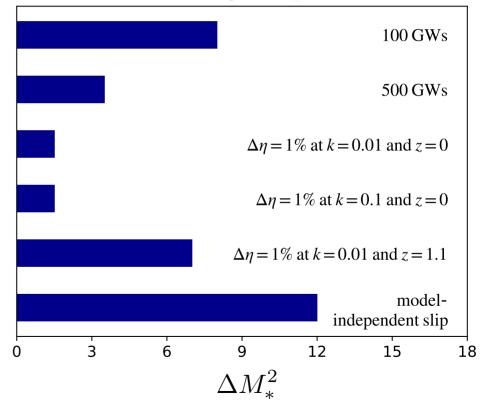

Bright sirens forecasts with the Einstein Telescope

- $\wedge \text{CDM} \rightarrow \frac{\Delta H_0}{H_0} \sim 1\%$
- for any viable f(R), above a certain z

$$\frac{D_{\rm gw}}{D_L} \sim 1 + \frac{f_{R0}}{2}$$
 in the best scenario $\rightarrow |f_{R0}| \lesssim 10^{-2}$

• Large degeneracies between the cosmological parameters and the modified gravity ingredient M_*^2

Matos, Bellini, Calvão, Kunz (2023)

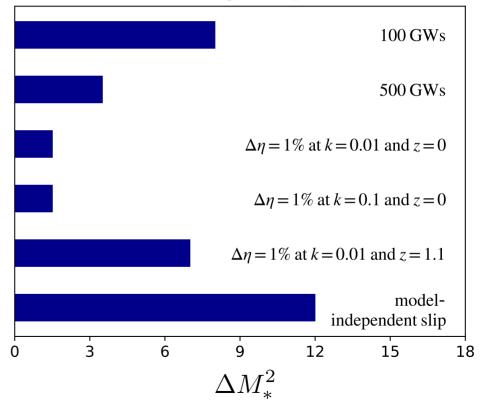


Matos, Bellini, Calvão, Kunz (2023)

Slip vs GWs

Slip and GW distance have similar constraining power

Fixed cosmological parameters


Matos, Bellini, Calvão, Kunz (2023)

Slip vs GWs

Slip and GW distance have similar constraining power

LSS Euclid-like surveys will give more precise measurements than standard sirens but more model-dependent

Fixed cosmological parameters

Take home message

GWs provide various independent tests of the Λ CDM model and its extensions

→ Advantage of the test for modified gravity: they are sensitive to a single extra function $M_*^2(z)$

→ Distance-redshift relation: degeneracies between the cosmological and modified gravity parameters

 \rightarrow The combination of GWs with other probes is crucial

Perspectives

• Break degeneracies combining SNe and bright sirens $D_L \times D_{gw}$

Model-independent test

In prep., with Quartin, Amendola & Kunz

Perspectives

• Break degeneracies combining SNe and bright sirens

Model-independent test

In prep., with Quartin, Amendola & Kunz

• Dark sirens + galaxy catalogs

with R. Sturani

 $D_L imes D_{gw}$

 $ho(H_0|\{D_{\mathrm{gw}}\},\{z\})$ Joint probability of GW data and redshifts of galaxies

What if the catalog is incomplete?

Thank you!