

Friedrich-Alexander-Universität Erlangen-Nürnberg

Machine Learning for Astroparticle Physics

Astroparticle Physics: Reconstructions

Study of particles with astronomical origin

arrival direction, energy, particle type (high level)

Reconstruction

- low energies → direct reconstruction
- high energies → indirect (challenging)
 - traditional: fits, parameterization, physics observables
 - more recent: template methods, ML using physics observables

Machine Learning and Deep Learning

Machine Learning

- applications across many physics domains, e.g., for (background rejection, multi-class classifications)
- BDTs, random forest, shallow NNs

Deep Learning

- driven by computer science (BigTechs)
- major improvements in:
 - speech recognition, NLP
 - pattern recognition, CV
- (usually) requires huge amounts of data

https://www.aitimejournal.com/@akshay.chavan/a-comprehensive-guide-to-decision-tree-learning

Deep Learning: RNNs & CNNs

Convolutional Networks (CNNs)

- analyze image-like data
- filter exploits image
 - features translational invariance
 - prior on local correlations

Graph Network

- For data with spatial correlations
 - Local proximity important prior
- Extent concept of CNNs to

Non-Euclidean Manifolds

Non-regular grids

Deep learning for physics Glombitza | ECAP | 05/09/23

Air Shower Reconstruction

- Train neural network on simulated detector signals
- Verify reconstruction using hybrid events
 - precise observations of shower maximum using FD
- ML approach outperforms physicist's designed algorithm on MC and data
- potential for new insights into **UHECR** composition
- Deep learning for physics Glombitza | ECAP | 05/09/23

signal traces

The Pierre Auger Collaboration, JINST 16 P07019 (2021)

Corr. = 0.7

900

1000

Background Rejection

- Gamma ray telescopes in Namibia
 - background rejection (hadrons / photons)
 - 1 gamma each 10⁴ protons
 - Powerful discrimination needed
- First promising results on simulations
 - Neural networks outperforms BDT

Future plans at ECAP

- full reconstruction (stereoscopic observations)
- Deep learning for physics Glombitza | ECAP | 05/09/23

Gamma/Hadron Separation for IACTs

Interpretation of graph

Interpret IACT images as graphs

- Consider only pixels after cleaning
 - Built graph using kNN cluster (k=6 due to hexagonal grid)
- 8 Deep learning for physics Glombitza | ECAP | 05/09/23

- Preselection applied (local distance cut)
- At gamma efficiency of 50%, FPR of 10^{-3}
 - background rejection improved by factor of 10 compared to BDT

Generalization Capacities on Data

DNNs and Domain Adaption

- models are trained using physics simulations
- trained models are applied to data
 - can lead to reconstruction biases

https://bair.berkeley.edu/static/blog/humans-cyclegan/

9

Simulation Refinement

Erdmann et al. Comput Softw Big Sci (2018) 2: 4

- Training on simulations but application on data
 - Model can be sensitive to artifacts / mismatches existing in simulation

Simulation Refinement

Erdmann et al. Comput Softw Big Sci (2018) 2: 4

mitigate data / simulation mismatches \rightarrow train *refiner* to refine simulated data

Deep learning for physics

Glombitza | ECAP | 05/09/23

11

• feedback given by adversarial *critic* network, rating the refined simulation quality

- refiner uses feedback to improve performance
- improved performance when training with refined simulation

Summary

The advent of deep learning offers new tools for astroparticle physics \rightarrow Novel opportunities to analyze large amounts of data

- Event reconstruction
- Background rejection
- Central challenge: transfer performance from MC to data
 - 'refinement' of simulated data (domain adaption)
- studies at ECAP:
 - event reconstruction: IACTs (H.E.S.S. / CTA), WCD-based (Auger, SWGO)
 - acceleration of physics simulations

Will artificial intelligence replace us (physicists)?

Will artificial intelligence replace us (physicists)?

Quantitative study to assess to what extent robotics and AI abilities can replace human abilities (technology readiness level):

	Occupation	Main Texta (low-automation- high- automation)				Sensitivity (Missing at Random)			
		Rank	Mean	low- automat ion	high- automatio n	Rank	Mean	p5	p95
Safest job	Physicists	1	0.44	0.20	0.67	1	0.49	0.43	0.55
	Robotics Engineers	122	0.55	0.31	0.80	78	0.64	0.59	0.69
	Economists	203	0.57	0.31	0.83	207	0.68	0.61	0.74

This is the wrong question!

How can we (physicists) use the new technology to accelerate and improve our research?

Summary

The advent of deep learning offers new tools for astroparticle physics \rightarrow novel opportunities to analyze large amounts of data

- Event reconstruction
- Background rejection
- unsupervised learning models
 - 'refinement' of simulated data (domain adaption)
- studies at ECAP:
 - event reconstruction: IACTs (H.E.S.S. / CTA), WCD-based (Auger, SWGO)
 - acceleration of physics simulations