

Galactic Centre with H.E.S.S.: Search for Dark Matter and a PeVatron & Systematic Uncertainties

Katrin Streil

Galactic Centre with H.E.S.S.: Search for Dark Matter and a PeVatron & Systematic Uncertainties

- WIMPs
- 3D Model:
 - Spectrum:
 - Assumed annihilation channel
 - Assumed DM mass
 - Spatial Morphology:
 - Assumed density profile
 - J-Factor
- Standard analysis: exclude excess along Galactic Plane
- Fitting and set limits on the annihilation cross-section

- WIMPs
- 3D Model:
 - Spectrum:
 - Assumed annihilation channel
 - Assumed DM mass
 - Spatial Morphology:
 - Assumed density profile
 - J-Factor
- Standard analysis: exclude excess along Galactic Plane
- Fitting and set limits on the annihilation cross-section

J-Factor, Einasto profile

- WIMPs
- 3D Model:
 - Spectrum:
 - Assumed annihilation channel
 - Assumed DM mass
 - Spatial Morphology:
 - Assumed density profile
 - J-Factor
- Standard analysis: exclude excess along Galactic Plane
- Fitting and set limits on the annihilation cross-section

- WIMPs
- 3D Model:
 - Spectrum:
 - Assumed annihilation channel
 - Assumed DM mass
 - Spatial Morphology:
 - Assumed density profile
 - J-Factor
- Standard analysis: exclude excess along Galactic Plane
- Fitting and set limits on the annihilation cross-section

- WIMPs
- 3D Model:
 - Spectrum:
 - Assumed annihilation channel
 - Assumed DM mass
 - Spatial Morphology:
 - Assumed density profile
 - J-Factor
- Standard analysis: exclude excess along Galactic Plane
- Fitting and set limits on the annihilation cross-section

- Result:
 - Observed Limits order of magnitude "too good"
 - Limits based on simulations "correct"
- Conclusion:

Systematics!

Galactic Centre with H.E.S.S.: Search for Dark Matter and a PeVatron & Systematic Uncertainties

Yu Wun Wong

Diffuse γ-Ray Emission

Motivation:

- Diffusion properties
- Proton energy cutoff

Diffuse γ-Ray Emission

Solve diffusion equation:

 $\frac{\partial n(\vec{r}, E, t)}{\partial t} = D(E_p) \nabla^2 n(\vec{r}, E, t)$

and proton spectrum:

 $\frac{dN_p}{dE_p} = N_0 E_p^{-\Gamma} e^{-E_p/E_c}$

Tsuboi et al (1999) Sawada et al (2004)

Diffuse γ-Ray Emission

Solve diffusion equation:

 $\frac{\partial n(\vec{r}, E, t)}{\partial t} = D(E_p) \nabla^2 n(\vec{r}, E, t)$ and proton spectrum: $\frac{dN_p}{dE_p} = N_0 E_p^{-\Gamma} e^{-E_p/E_c}$ $E_c[TeV]$ 142 ± 31 Energy cutoff at > 1PeV rejected by 3.6o \rightarrow PeVatron in the GC unlikely to exist! Systematics!

Sawada et al (2004)

Galactic Centre with H.E.S.S.: Search for Dark Matter and a PeVatron & Systematic Uncertainties

Uncertainties – General Introduction

Statistical Uncertainties σ_{stat}

- Due to intrinsic randomness of continuous variables
- Poisson term in Likelihood function
- Estimated via Likelihood-ratio test

Systematic Uncertainties σ_{sys}

- Due to mismodelling of:
 - 3D BKG template
 - IRF (effective area, energy reconstruction, PSF)
- Described by "nuisance parameters"
- Gaussian prior term in Likelihood function
 = estimate of the magnitude of the systematic

Nuisance Parameter (Eff. area)

18

Uncertainties – General Introduction

Statistical Uncertainties σ_{stat}

- Due to intrinsic randomness of continuous variables
- Poisson term in Likelihood function •
- Estimated via Likelihood-ratio test •

Systematic Uncertainties σ_{svs}

- Due to mismodelling of:
 - 3D BKG template
 - IRF (effective area, energy reconstruction, PSF)
- Described by "nuisance parameters"
- Gaussian prior term in Likelihood function • = estimate of the magnitude of the systematic

Total uncertainty $\sigma^2 = \sigma_{stat}^2 + \sigma_{svs}^2$

Result (BKG Systematics)

- Setting up an energy dependent model with multiple nuisance parameters
- Estimate of the magnitude and correlation of the systematic as input to the Gaussian Prior
 - \rightarrow Improved description of the FoV (bkg)

Result (IRF Systematics)

- Setting up an energy dependent model with multiple nuisance parameters (energy bias, effective area, ...)
- Estimate of the magnitude and correlation of the systematic as input to the Gaussian Prior (tests on simulated datasets)
 - \rightarrow Systematic uncertainty of the model parameters

Summary

- Strong effect on energy dependent model parameters (DM cross-section, PeVatron Cutoff energy)
- Apply to H.E.S.S. data of the Galactic Centre

Friedrich-Alexander-Universität Erlangen-Nürnberg

Backup

Uncertainties due to Effective Area

- Extreme cases: +- 10 %
- Best fit amplitude deviating from input
- With nuisance parameter: input value within the uncertainty!

Diffuse γ-Ray Emission – Fit Results

- γ-ray spectrum with and without proton energy cutoff
- No cutoff worsens results by 5.7σ

Best Fit spectra and fluxpoints of the sources
 Is the cutoff due to contamination from other sources? → No, valid in masked region

Diffuse y-Ray Emission – Galactic Ridge

- Investigation of a smaller region:
 - |l| < 1 deg and |b| < 0.3 deg
 - Circular mask around sources
- Comparison with H.E.S.S. (2018) and MAGIC (2020): Shift by a factor of 2
 - Contamination due to foreground and HESS J1745-290
 - Different methodology to obtain the spectrum
- Cut off still valid!

Summary

- Hadronic scenario
- Two injection scenarios:
 - Continuous
 - Impulsive

(additional Gaussian component)

• Diffusion properties $E_c[TeV] = 142 \pm 31(243 \pm 85)$

- Source 2

Source 1

- Energy cutoff at > 1PeV rejected by 3.6σ (2 σ)
 - \rightarrow PeVatron in the GC unlikely to exist!

Outlook

- Include energy loss
- Leptonic scenario
- Include systematics due to IRF

