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Sweet-Parker Model for MR

where the Lundquist number is

Mechanism for the merging of two 
oppositely directed magnetic fields   
in a highly conducting fluid.

- Solar flares;
- Current sheets;
- Slow Reconnection rate.
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… and turbulence is everywhere

(Armstrong, Rickett & Spangler, 1995, ApJ)

“Big power law in the sky” (ISM
)



Turbulence in Astronomy
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(IceCube Collaboration, 2022, Science)

The absence of      rays 
indicates 

auto-absorption due to 
a dense photon field

      The emission may 
become from the inner 

part of the AGN!
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(IceCube Collaboration, 2022, Science)

What may accelerate 
these protons in the 
surroundings of the 

SMBH?

A: Magnetic 
Reconnection! 

Neutrino VS gamma-ray flux from NGC1068
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Possible configuration of the 
magnetic field lines for an 
accretion flow into a black hole
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(de Gouveia Dal Pino & Lazarian, 2005, A&A)

Particles can be 
accelerated in 
the magnetic 
discontinuity 
according to a 
first-order Fermi 
process: 

Magnetic Reconnection around Black Holes



(de Gouveia Dal Pino & Lazarian, 2005, A&A)

Implies an 
exponential 
growth of the 
energy with 
time!

Magnetic Reconnection around Black Holes



Example of application: SgrA*

(Rodríguez-Ramírez, de Gouveia Dal Pino & Alves Batista, 2019, ApJ)



Algorithm for search reconnection sites

Search for reconnection sites in 2D & 3D GRMHD simulations of accretion flows

(Kadowaki et al. 2018; de Gouveia Dal Pino et al. 2018)



Testing theory with MHD simulations

In classical regime, we use the AMUN code 
(Kowal, 2009) to solve the isothermal non-ideal 
MHD equations:
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and the initial magnetic field is given by

where
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(Vicentin et al., in prep.)

We can recover the Sweet-Parker 
regime for low-Lundquist 
numbers!

The reconnection rate starts to 
deviate from SP for 
high-Lundquist numbers 
(plasmoid instability)



(Vicentin et al., in prep.)

|J|
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(Vicentin et al., in prep.)

For the case where we inject 
forced turbulence initially in the 
domain (up to      ), we can 
reach high values of

even after the turbulence 
injection is stopped.



(Vicentin et al., in prep.)

Testing theory with MHD simulations

The system remains turbulent 
longer after the turbulence 
injection!
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Conclusions & take-home messages

- Magnetic reconnection is ubiquitous in Astrophysics
- Solar flares

- Turbulence makes it faster
- Independent on S and η

- Turbulent magnetic reconnection around BHs can explain VHE 
emission from these compact sources

- from theory and global GRMHD sims.
- Classical MHD simulations have showed that the system 

remains turbulent even after injection is stopped



Thank you!

Giovani H. Vicentin
IAG USP

+55 (11) 98714-5080

giovani.vicentin@usp.br
Any question?


