

Extensive air showers simulation, analysis, and more

Luan Bonneau Arbeletche

luan.arbeletche@gmail.com

High-energy astrophysics in the multi-messenger era - Erlangen - May 2023

Pelotas, Rio Grande do Sul, Brazil

Pelotas, Rio Grande do Sul, Brazil

Pelotas, Rio Grande do Sul, Brazil

Pelotas, Rio Grande do Sul, Brazil

2015 Physics (licenciatura) - Pelotas - UFPel

Pelotas, Rio Grande do Sul, Brazil

2015 Physics (licenciatura) - Pelotas - UFPel

<u>2017</u> MSc - Pelotas - UFPel GAME - Grupo de Altas e Médias Energias

Pelotas, Rio Grande do Sul, Brazil

2015 Physics (licenciatura) - Pelotas - UFPel

<u>2017</u> MSc - Pelotas - UFPel GAME - Grupo de Altas e Médias Energias

2021 PhD - São Carlos - IFSC/USP

Pelotas, Rio Grande do Sul, Brazil

2015 Physics (licenciatura) - Pelotas - UFPel

<u>2017</u> MSc - Pelotas - UFPel GAME - Grupo de Altas e Médias Energias

2021 PhD - São Carlos - IFSC/USP

<u>then</u> six months as a SW developer

Pelotas, Rio Grande do Sul, Brazil

2015 Physics (licenciatura) - Pelotas - UFPel

<u>2017</u> MSc - Pelotas - UFPel GAME - Grupo de Altas e Médias Energias

2021 PhD - São Carlos - IFSC/USP

then six months as a SW developer

now postdoc at IFSC/IFGW

Multi messenger astrophysics

i. diversity of particles/messengers

Multi messenger astrophysics

- i. diversity of particles/messengers
- ii. broad energy range/spectrum

Multi messenger astrophysics

- i. diversity of particles/messengers
- ii. broad energy range/spectrum
- iii. unknown environments of propagation and acceleration

Multi messenger astrophysics

- i. diversity of particles/messengers
- ii. broad energy range/spectrum
- iii. unknown environments of propagation and acceleration

Multi messenger astrophysics

- i. diversity of particles/messengers
- ii. broad energy range/spectrum
- iii. unknown environments of propagation and acceleration

At the highest energies

iv. the flux of particles is too small for direct detectors

Multi messenger astrophysics

- i. diversity of particles/messengers
- ii. broad energy range/spectrum
- iii. unknown environments of propagation and acceleration

- iv. the flux of particles is too small for direct detectors
- v. the energy is enough to generate an observable cascade in the atmosphere

Multi messenger astrophysics

- i. diversity of particles/messengers
- ii. broad energy range/spectrum
- iii. unknown environments of propagation and acceleration

- iv. the flux of particles is too small for direct detectors
- v. the energy is enough to generate an observable cascade in the atmosphere

Multi messenger astrophysics

- i. diversity of particles/messengers
- ii. broad energy range/spectrum
- iii. unknown environments of propagation and acceleration

- iv. the flux of particles is too small for direct detectors
- v. the energy is enough to generate an observable cascade in the atmosphere

<u>Facts</u>

i. started by extraterrestrial particle

<u>Facts</u>

- i. started by extraterrestrial particle
- ii. cascade of particles and radiation

<u>Facts</u>

- i. started by extraterrestrial particle
- ii. cascade of particles and radiation
- iii. stochastic process in nature

<u>Facts</u>

- i. started by extraterrestrial particle
- ii. cascade of particles and radiation
- iii. stochastic process in nature

<u>Facts</u>

- i. started by extraterrestrial particle
- ii. cascade of particles and radiation
- iii. stochastic process in nature

<u>Facts</u>

- i. started by extraterrestrial particle
- ii. cascade of particles and radiation
- iii. stochastic process in nature

Why care about them?

i. interesting per se, beyond astrophysics

<u>Facts</u>

- i. started by extraterrestrial particle
- ii. cascade of particles and radiation
- iii. stochastic process in nature

- i. interesting per se, beyond astrophysics
- ii. interactions up to $\sim 10^{20} \text{ eV}$ (LHC is 10^{17} lab. energy)

<u>Facts</u>

- i. started by extraterrestrial particle
- ii. cascade of particles and radiation
- iii. stochastic process in nature

- i. interesting per se, beyond astrophysics
- ii. interactions up to $\sim 10^{20} \text{ eV}$ (LHC is 10^{17} lab. energy)
- iii. up to ~10¹² electrons in few μs

<u>Facts</u>

- i. started by extraterrestrial particle
- ii. cascade of particles and radiation
- iii. stochastic process in nature

- i. interesting per se, beyond astrophysics
- ii. interactions up to $\sim 10^{20}$ eV (LHC is 10^{17} lab. energy)
- iii. up to ~10^{12} electrons in few μs
- iv. early experimental particle physics

<u>Facts</u>

- i. started by extraterrestrial particle
- ii. cascade of particles and radiation
- iii. stochastic process in nature

- i. interesting per se, beyond astrophysics
- ii. interactions up to $\sim 10^{20}$ eV (LHC is 10^{17} lab. energy)
- iii. up to ~10^{12} electrons in few μs
- iv. early experimental particle physics
- v. great scenario for machine learning

1 Arrival direction

✓ ✓

2 Primary energy

✓ ✓

1 Arrival direction

- \checkmark momentum conservation
- \checkmark shower geometry

2 Primary energy

✓ ✓

1 Arrival direction

- \checkmark momentum conservation
- \checkmark shower geometry

2 Primary energy

- \checkmark proportional to the signal
- ✓ calorimetric energy, amplitude, etc.

1 Arrival direction

- \checkmark momentum conservation
- \checkmark shower geometry

<u>2 Primary energy</u>

- \checkmark proportional to the signal
- \checkmark calorimetric energy, amplitude, etc.

- ✓ difficult, typically Xmax
- \checkmark shower-to-shower typically not possible

1 Arrival direction

- \checkmark momentum conservation
- \checkmark shower geometry

<u>2 Primary energy</u>

- \checkmark proportional to the signal
- \checkmark calorimetric energy, amplitude, etc.

- ✓ difficult, typically Xmax
- \checkmark shower-to-shower typically not possible

Xmax and the mass composition at ultra-high energies

34

Hadronic interactions

Simulation of EAS

- i. CORSIKA detailed, but not fast
- ii. CONEX fast, but not detailed

Diffractive interactions

- i. no exchange of quantum numbers
- ii. non-perturbative regime of QCD
- iii. phenomenological models diverge

Diffractive interactions

- i. no exchange of quantum numbers
- i. non-perturbative regime of QCD
- ii. phenomenological models diverge

Impact over the depth of shower maximum

Background rejection

- ✓ sensitivity is constrained by background rejection power
- ✓ gamma-like-shower rates are different between models

Background rejection

- ✓ sensitivity is constrained by background rejection power
- ✓ gamma-like-shower rates are different between models
- ✓ M. Ohishi et al

Background rejection

- ✓ sensitivity is constrained by background rejection power
- ✓ gamma-like-shower rates are different between models
- ✓ M. Ohishi et al

Background rejection

- ✓ sensitivity is constrained by background rejection power
- ✓ gamma-like-shower rates are different between models
- ✓ M. Ohishi et al

Computed sensitivity

 ✓ up to 30% different in the 1 TeV to 30 TeV region

Background rejection

- ✓ sensitivity is constrained by background rejection power
- ✓ gamma-like-shower rates are different between models
- ✓ M. Ohishi et al

Computed sensitivity

- ✓ up to 30% different in the 1 TeV to 30 TeV region
- ✓ problem or opportunity?

Parameterizations & reconstruction

lookup tables, signal subtraction of Cherenkov, template-based reco, etc.

Parameterizations & reconstruction

lookup tables, signal subtraction of Cherenkov, template-based reco, etc.

Shower universality

Parameterizations & reconstruction

lookup tables, signal subtraction of Cherenkov, template-based reco, etc.

Shower universality

Cherenkov-light signal

- ✓ phenomenological description of photon angular distr.
- $\checkmark\,$ parametrization vs shower age and atmospheric height

Extreme fluctuations

Extreme fluctuations

Extreme fluctuations

Extreme fluctuations are mass dependent

- i. previous work on fluorescence shows statistics is too low
- ii. alternative techniques have never been explored
- iii. radio signal is sensitive to the longitudinal evolution

Can we measure those showers?

- i. previous work on fluorescence shows statistics is too low
- ii. alternative techniques have never been explored
- iii. radio signal is sensitive to the longitudinal evolution

Detailed 3D simulations are required. Our strategy:

- i. CONEX simulation of ~10⁷ showers (0.05% are double bump)
- ii. reprocessed the anomalous ones in 3D CORSIKA
- iii. extracted the radio signal (electric field vs time)

Can we measure those showers?

- i. previous work on fluorescence shows statistics is too low
- ii. alternative techniques have never been explored
- iii. radio signal is sensitive to the longitudinal evolution

Detailed 3D simulations are required. Our strategy:

- i. CONEX simulation of ~10⁷ showers (0.05% are double bump)
- ii. reprocessed the anomalous ones in 3D CORSIKA
- iii. extracted the radio signal (electric field vs time)

We need a classification algorithm! Maybe machine learning?

- i. still ongoing, no conclusive results yet
- ii. hopefully RNNs will be able to identify the outliers

Motivation

- i. Xmax is Xfirst + ΔXmax (convolved)
- ii. Reconstruction of Xfirst would allow us for a direct access the properties of the primary

Motivation

- i. Xmax is Xfirst + ΔXmax (convolved)
- ii. Reconstruction of Xfirst would allow us for a direct access the properties of the primary

Benchmark model: Gaisser-Hillas parameters

$$N' = \left(1 + \frac{RX'}{L}\right)^{R^{-2}} \exp\left(-\frac{X'}{LR}\right)$$

Motivation

- i. Xmax is Xfirst + ΔXmax (convolved)
- ii. Reconstruction of Xfirst would allow us for a direct access the properties of the primary

Benchmark model: Gaisser-Hillas parameters

$$N' = \left(1 + \frac{RX'}{L}\right)^{R^{-2}} \exp\left(-\frac{X'}{LR}\right)$$

<u>Motivation</u>

- i. Xmax is Xfirst + ΔXmax (convolved)
- ii. Reconstruction of Xfirst would allow us for a direct access the properties of the primary

Benchmark model: Gaisser-Hillas parameters

$$N' = \left(1 + \frac{RX'}{L}\right)^{R^{-2}} \exp\left(-\frac{X'}{LR}\right)$$

Benchmark MLP

- i. trained on 9×10^6 showers (p, He, C, Si, Fe from 10^{17-20} eV)
- ii. two layers with 64 nodes each

<u>Motivation</u>

- i. Xmax is Xfirst + ΔXmax (convolved)
- ii. Reconstruction of Xfirst would allow us for a direct access the properties of the primary

Benchmark model: Gaisser-Hillas parameters

$$N' = \left(1 + \frac{RX'}{L}\right)^{R^{-2}} \exp\left(-\frac{X'}{LR}\right)$$

Benchmark MLP

- i. trained on 9×10^6 showers (p, He, C, Si, Fe from 10^{17-20} eV)
- ii. two layers with 64 nodes each

<u>Ongoing</u>

- i. networks analyzing directly the shower profile
- ii. more complex networks, different types of layers
- iii. effect of limiting the observed profile range

Network configuration

i. three dense layers with 1024 nodes
ii. trained on 9 x 10⁵ showers
iii. p, He, C, Si, Fe from 10¹⁷⁻²⁰ eV

Network configuration

i. three dense layers with 1024 nodes ii. trained on 9×10^5 showers iii. p, He, C, Si, Fe from 10^{17-20} eV

Full profile range (0 to 2000 g/cm²)

Network configuration

i. three dense layers with 1024 nodes
ii. trained on 9 x 10⁵ showers
iii. p, He, C, Si, Fe from 10¹⁷⁻²⁰ eV

Full profile range (0 to 2000 g/cm²)

600 g/cm² around X_{max}

Network configuration

i. three dense layers with 1024 nodes ii. trained on 9×10^5 showers iii. p, He, C, Si, Fe from 10^{17-20} eV

<u>Overall</u> - improvement over our benchmark model

Full profile range (0 to 2000 g/cm²)

600 g/cm² around X_{max}

Summary & closing remarks

- ✓ from Pelotas, but living in São Carlos, working as a postdoc at USP
- ✓ our group is interested in many aspects related to extensive air showers
 - Cherenkov detection, fluorescence detection, radio detection, and so on
 - air shower physics, shower modelling, and proposing new techniques
 - hadronic interactions and systematic uncertainties
- ✓ some expertise in simulation and understandment of analysis tools
- interest in applying Machine Learning (Andrés, Bruna)
- ✓ search for exotic particles (Tales)

