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Why care about them?

i. interesting per se, beyond astrophysics

ii. interactions up to ~10²⁰ eV

(LHC is 10¹⁷ lab. energy)

iii. up to ~10¹² electrons in few μs

iv. early experimental particle physics

v. great scenario for machine learning
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Contribution in São Carlos

✓ parametric description of Xmax

✓ ~10⁷ simulated showers

✓ Gumbel distribution is OK

✓ mass composition analysis
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b) ad hoc simulation
c) data analysis

d) results

hadronic 

interaction

model

Arbeletche, de Souza - 10.1016/j.astropartphys.2019.102389
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Diffractive interactions

i. no exchange of quantum numbers

ii. non-perturbative regime of QCD

iii. phenomenological models diverge

Impact over the depth of shower maximum

Arbeletche, Gonçalves, Müller - 10.1142/S0217751X18501531
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✓ up to 30% different in the 1 TeV 

to 30 TeV region

✓ problem or opportunity?

Ohishi, Arbeletche, de Souza, et al - 10.1088/1361-6471/abfce0



Parameterizations & 
reconstruction
lookup tables, signal subtraction of 

Cherenkov, template-based reco, etc.

46



Parameterizations & 
reconstruction
lookup tables, signal subtraction of 

Cherenkov, template-based reco, etc.

Shower universality

47



Parameterizations & 
reconstruction
lookup tables, signal subtraction of 

Cherenkov, template-based reco, etc.

Shower universality

48

Cherenkov-light signal

✓ phenomenological description of photon angular distr.

✓ parametrization vs shower age and atmospheric height

Arbeletche, de Souza - 10.1140/epjc/s10052-021-08971-7
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Revisiting shower universality: anomalous showers
Extreme fluctuations are mass dependent
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Can we measure those showers?

i. previous work on fluorescence shows statistics is too low

ii. alternative techniques have never been explored

iii. radio signal is sensitive to the longitudinal evolution

Detailed 3D simulations are required. Our strategy:

i. CONEX simulation of ~10⁷ showers (0.05% are double bump)

ii. reprocessed the anomalous ones in 3D CORSIKA

iii. extracted the radio signal (electric field vs time)

We need a classification algorithm! Maybe machine learning?

i. still ongoing, no conclusive results yet

ii. hopefully RNNs will be able to identify the outliers
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Benchmark MLP

i. trained on 9 x 10⁶ showers (p, He, C, Si, Fe from 10¹⁷⁻²⁰ eV)

ii. two layers with 64 nodes each

Ongoing

i. networks analyzing directly the shower profile

ii. more complex networks, different types of layers

iii. effect of limiting the observed profile range
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Preliminary results on 
Xfirst reconstruction 
using MLPs

Network configuration

i. three dense layers with 1024 nodes

ii. trained on 9 x 10⁵ showers

iii. p, He, C, Si, Fe from 10¹⁷⁻²⁰ eV 

Overall - improvement over our benchmark 

model
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Summary & closing remarks

✓ from Pelotas, but living in São Carlos, working as a postdoc at USP

✓ our group is interested in many aspects related to extensive air showers

○ Cherenkov detection, fluorescence detection, radio detection, and so on

○ air shower physics, shower modelling, and proposing new techniques

○ hadronic interactions and systematic uncertainties

✓ some expertise in simulation and understandment of analysis tools

✓ interest in applying  Machine Learning (Andrés, Bruna)

✓ search for exotic particles (Tales)
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