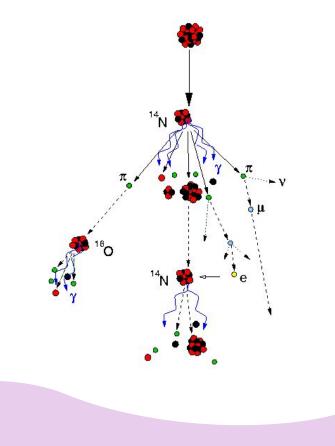
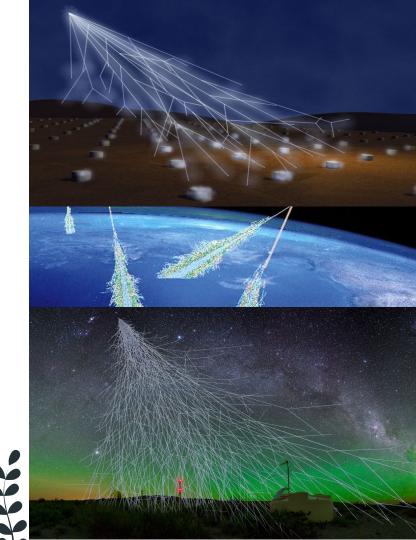
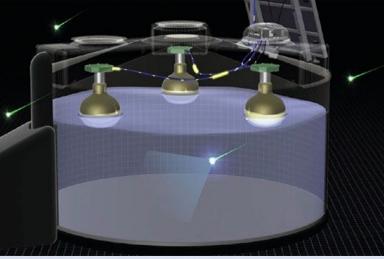
What can we learn from neutral particles in cosmic rays?

Danelise de Oliveira Franco

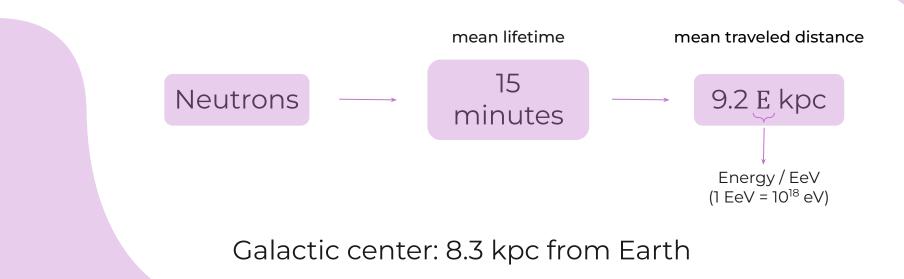

~ 90% hydrogen nuclei

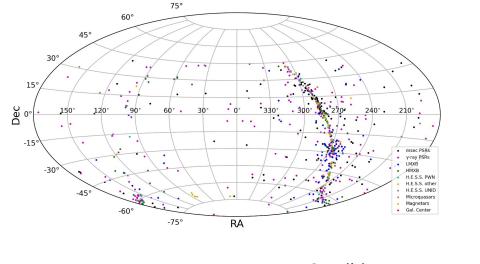

~ 9% helium nuclei


~1% heavier nuclei

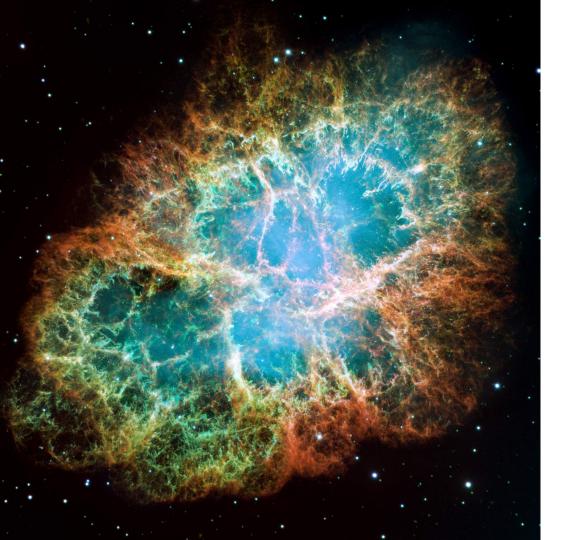
Air showers

The Pierre Auger Observatory


Loma Amarilla


Morados 20

Why neutral particles?


They are not deflected by magnetic fields

We are looking for an **excess** of cosmic ray events

Candidate sources

Neutron stars Millisecond pulsars γ -ray pulsars Microquasars Magnetars

etc...

What can the results tell us?

Positive detection

Identification of a cosmic ray source in the range of EeV

Negative detection

Do neutrons propagate in a more diffusive way?

Are neutrons not produced in the Galaxy?

Are neutrons produced in transient events?

Thank you!

PIERRE AUGER OBSERVATORY

Backup

Results published in 2014

Class	R.A. [°]	Decl. [°]	Obs	Exp	Flux U.L. $(km^{-2} yr^{-1})$	E-Flux U.L. $(eV cm^{-2} s^{-1})$	<i>p</i> -value	<i>p</i> -value (penalized)
msec PSRs	260.27	-24.95	237	214	0.019	0.14	0.058	0.98
γ-ray PSRs	8.59	-5.58	176	149	0.024	0.18	0.016	0.70
LMXB	264.57	-26.99	265	219	0.028	0.20	0.0012	0.10
HMXB	152.45	-58.29	283	248	0.019	0.14	0.014	0.49
H.E.S.S. PWN	128.75	-45.60	275	248	0.018	0.13	0.043	0.53
H.E.S.S. other	269.72	-24.05	235	211	0.019	0.14	0.054	0.59
H.E.S.S. UNID	266.26	-30.37	251	227	0.018	0.13	0.055	0.57
Microquasars	262.75	-26.00	247	216	0.022	0.16	0.020	0.23
Magnetars	81.50	-66.08	268	241	0.016	0.11	0.040	0.48
Gal. center	266.42	-29.01	234	223	0.014	0.10	0.24	
Gal. plane	Gal. lat. < 1.17		16965	17197	0.077	0.56	0.96	

Results for the Most Significant Target from Each Target Set

A. Aab et al 2014 ApJL **789** L34