The masses of Neutron Stars Lívia Silva Rocha

Advisor: Jorge E. Horvath

Erlangen, 08.05.2023

The maximum mass of NSs

- NS are described under the theory of GR
- The hydrostatic equilibrium is described from the Tolman-Oppenheimer-Volkoff (TOV) equation

$$\frac{dp}{dr} = -\frac{Gm(r)\rho(r)}{r^2} \left(1 + \frac{p(r)}{c^2\rho(r)}\right) \left(1 + \frac{4\pi r^3 p(r)}{c^2 m(r)}\right) \left(1 - \frac{2Gm(r)}{c^2 r}\right)^{-1}$$
$$m(r) = 4\pi \int_0^R r^2 \rho(r) dr.$$

- It predicts the existence of a maximum mass, above which the star collapses into a BH
- The exact value depend on the equation of state (EoS)

An "absolute limit"

• In 1974, Rhoades and Ruffini derived an absolute limit based on a few assumptions:

$$m_{RR} \sim 3.2 \, M_{\odot}$$

- This value is used as a safe threshold to distinguish between NSs and BHs
- Effects such as rotation and anisotropy can affect the limit (increase)

Equation of state

- We know (within some degree) how matter behaves until a certain density, correspondent with outer layers
- It's mass budget is in the core, yet undetermined
- A variety of EoS's are proposed

Strange Stars

- Strange matter hypothesis: the true ground state at high densities;
- Our work: quarks in CFL state;
- Consistent both with low and high masses

HESS J1731-347 (Doroshenko et al., 2022):

$$m = 0.77^{+0.20}_{-0.17} M_{\odot}$$

GW190814:

$$m = 2.59^{+0.08}_{-0.09} M_{\odot}$$

Horvath et al. (2023)

The mass distribution

 In 1934 Baade and Zwicky proposed for the first time the association of supernovae with the explosion of massive stars

The mass distribution

 In 1934 Baade and Zwicky proposed for the first time the association of supernovae with the explosion of massive stars

- First observations were consistent with the prediction that NSs are formed from the collapse of massive stars, when the *Fe* core mass reaches a limit
- Led to thought that stellar evolution does not allow formation of massive NSs

Thorsett & Chakrabarty (1999)

- Lightest NS: PSR J0453+1559 $m = 1.174 \pm 0.004 \ M_{\odot}$
- Heaviest NS: PSR J0952-0607 $m=2.35\pm0.17~M_{\odot}$
- ~ 15 systems with NS masses potentially higher than 2 M_{\odot}
- Measurements are sensitive to inclination angle

The mass distribution

- At least two groups which differs substantially
- "Standard" scenario: light Fe cores
 - \circ Suwa et al. (2018) showed that they can form NSs with $1.174~M_{\odot}$
- Degenerate *OMgNe* cores: $\sim 1.25 M_{\odot}$
- Massive NSs formed from heavier Fe cores: $\sim 1.9~M_{\odot}$
- Accretion process
- Accretion Induced Collapse (AIC) and Double Degenerate AIC

Evidences of massive NS's

- GW observations raised a tension:
 - \circ $\,$ GW170817: $m_{max} \leq 2.3 \; M_{\odot}$
 - \circ $\,$ GW190814: $m_{max} \geq 2.3 \,\, M_{\odot}$

From galactic NSs

The mass gap

• Absence of compact objects in the range 2 - 5 solar masses

DoNutSS: A Double Neutron Star System Catalogue

ABOUT TABLE PLOTS CITE LEARN MORE - CONTACT

Thanks for your attention!