Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät

Radio detection & reconstruction of neutrinos

Sjoerd (rd) Bouma 8 May 2023 FCAP

Recap: radio neutrinos

- In-ice shower initiated by UHE neutrino develops a negative charge excess at the shower front, giving rise to Askaryan radiation.
- At radio wavelengths (O(100 1000) MHz), **coherent** emission close to **Cherenkov angle** ($\sim 56^{\circ}$)
- At energies > 10 PeV, strong enough to detect at $\mathcal{O}(1)$ km distances in-ice radio detector for neutrinos!
- e.g. RNO-G in Greenland; ARIANNA, ARA, IceCube-Gen2 (?) in Antarctica

Three steps:

- 1. Signal direction direction of emission at the shower vertex
- 2. Viewing angle angle between the neutrino and the emitted signal
- 3. Polarization points towards the shower axis

– Three steps:

1. Signal direction: from 'triangulation'

– Three steps:

- 1. Signal direction: from 'triangulation'
- 2. **Viewing angle**: from shape of spectrum the emission **loses coherence** further from the Cherenkov angle, with the higher frequencies losing coherence first.

– Three steps:

- 1. Signal direction: from 'triangulation'
- 2. **Viewing angle**: from shape of spectrum the emission **loses coherence** further from the Cherenkov angle, with the higher frequencies losing coherence first.
- 3. **Polarization**: from different antennas ('Vpol' and 'Hpol')

air

This is what it looks like...

 - ...for a single neutrino: a small 'ellipse' on-sky.

This is what it looks like...

- ...for a single neutrino: a small 'ellipse' on-sky.

...for a **source** with multiple neutrinos detected ('point spread function').

Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät

Performance

Test case:

- IceCube-like flux + GZK
- RNO-G-like detector:
 - Three strings on a triangular grid
 - Trigger (phased array of 4 Vpols) and Hpol antennas at ${\sim}100$ m to maximize sensitivity
 - 3 additional upper Vpols for increased baselines
- Include both hadronic and electromagnetic showers
 - Electromagnetic showers at ultra-high energies more irregular (LPM effect) - harder to fit, & algorithm designed for hadronic showers.

Results

1. Signal direction (vertex reconstruction) limits successful reconstructions

 Mostly (but not exclusively) at low SNR, failure to reconstruct the shower maximum results in 'bad' overall reconstruction.

2. Polarization resolution is the dominant uncertainty

 Larger phase space & relatively less sensitive Hpol antennas lead polarization to dominate the angular uncertainty.

8 May 2023 11 / 12

Results

- 3. Uncertainty contours are strongly asymmetric
- Dominant polarization uncertainty results in elongated ellipses.
- This means the 1D 'space angle' strongly overestimates the actual uncertainty!

Results

3. Uncertainty contours are strongly asymmetric

- Dominant polarization uncertainty results in elongated ellipses.
- This means the 1D 'space angle' strongly overestimates the actual uncertainty!
- E.g. median resolution for HAD, analysis cut: 4.9° (space angle) vs. 17 $\rm deg^2\approx 2.4^\circ$ 1D-equivalent.

Conclusions

- 1. We **can reconstruct neutrinos** with a deep in-ice radio detector! (Now we just need to find some...)
- 2. Resolution limited by vertex and polarization reconstruction
- 3. Uncertainty contours are asymmetric **can not just quote a space angle**!
 - Single event ellipse
 - Point spread function bow tie
- 4. Improvements expected!
 - Improve vertex reconstruction by better pulse finding at low SNR?
 - Dedicated algorithm for electromagnetic showers?
 - Machine learning?

- ...

direction

Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät

Backup

Example reconstruction

Systematic uncertainties

Zenith and energy dependence

- Shape of the PSF depends on local zenith
- Orientation of the polarization direction geometrically constrained \rightarrow bow-tie shape
- Area larger than single event contour, but smaller than for a symmetric PSF

Discovery potential

- Can study the source discovery potential for a source at a declination of 20°
- Shown normalized to 'all events' lower is better
- At \leq expected background flux, number of events detected is much more important than resolution.

Friedrich-Alexander-Universität Naturwissenschaftliche Fakultät

The algorithm

- Unfolding: invert the detector response & propagation effects, and fit the electric field
- Advantage: (Askaryan) model-independent
- But: inflates noise where detector response is weaker, hard to combine information from multiple antennas

- Forward-folding: for each direction hypothesis, take the electric field and forward-fold it with expected effects from propagation & detector response.
- Fit to measured voltage traces.
- Improved accuracy compared to standard unfolding, especially at low SNR 1

- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation

- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation
- Maximize total correlation over all channels in iterative grid search

- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation
- Maximize total correlation over all channels in iterative grid search

- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation
- Maximize total correlation over all channels in iterative grid search

- 'Triangulation': use time differences at different antennas to obtain emission vertex (≈ shower maximum)
- Time differences obtained by template correlation
- Maximize total correlation over all channels in iterative grid search
- → Ice model + ray type + vertex position determine signal direction

Step 2: Find pulses

- Use emission vertex as input for the direction reconstruction.
- Exact pulse arrival times not known due to uncertainties in vertex, ice model, group delays...
- At low SNR, end up fitting random noise fluctuations.
- $\rightarrow\,$ identify approximate pulse windows, and include only those with amplitude $> 3.5\sigma_{noise}$

For each viewing angle, polarization and shower energy hypothesis:

- Forward-fold expected electric field with propagation & detector effects
- Determine exact pulse arrival time within each pulse window using correlation
- Compute

$$\chi^{2} = \sum_{n=1}^{n_{\text{pulses}}} \sum_{i=1}^{n_{\text{samples}}} \frac{(x_{i} - f_{i}(\theta_{\text{view}}, \phi_{\text{pol}}, E_{\text{sh}}))^{2}}{\sigma_{\text{noise}}^{2}}$$

ightarrow Obtain neutrino properties that minimize χ^2

