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1. Indirect detection of dark matter: basic principles

2. Indirect searches for dark matter with gamma-rays 
(and neutrinos): instruments and recent results

3. Indirect searches for dark matter with neutrinos: 
instruments and recent results  

4. Indirect searches for dark matter with charged 
cosmic-rays: instruments and recent results

Disclaimer: Very large topic. Here I present a personal 
selection of recent results



Two hypothesis:
1. Dark matter does exist

Most gravitational mass of galaxies 
and galaxy clusters (Zwicky 1937) Large halos em around Galaxies: 

rotation curves (Rubin+ 1980)

Pratically non-collisional: Bullet 
Cluster (Clowe+ 2006)

Non-barionic: Big bang nucleosynthesis, barionic 
accoustic oscillations, WMAP(2010), Planck(2015)

3



Two hypothesis:
1. Dark matter does exist

Most gravitational mass of galaxies 
and galaxy clusters (Zwicky 1937) Large halos em around Galaxies: 

rotation curves (Rubin+ 1980)

Pratically non-collisional: Bullet 
Cluster (Clowe+ 2006)

Non-barionic: Big bang nucleosynthesis, barionic 
accoustic oscillations, WMAP(2010), Planck(2015)

4

All evidence of dark 
matter existence comes 
from astrophysics!



Two hypothesis:
1. Dark matter does exist

2. Dark matter is a particle that couples non-gravitationally to 
Standard Model particles

Annihilation or decay 
of DM leads to the 
production of stable 
particles of Standard 
Model
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ΩM = Ωcdm +Ωb

Ωb = 0.048 ± 0.001

Ωcdm = 0.258 ± 0.006

ΩΛ = 0.691 ± 0.006

Standard Cosmology Model: ΛCDM

Observation constraints
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ΩM = Ωcdm +Ωb

DM density vs Temperature

ΩCDM

Small cross-section: 
early freeze-out, too 
much DM

Large cross-section: 
late freeze-out, too 
little DM
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Boltzman equation in comoving volume
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Standard Cosmology Model: ΛCDM

We believe in 
miracles!

Weakly Interacting Particle (WIMP)
• weak scale mass (10 GeV - 1 TeV)
• electroweak interaction ~ 3x10-26 cm3s-1
• Produces observed relic density

Observation constraints

Ωb = 0.048 ± 0.001

Ωcdm = 0.258 ± 0.006

ΩΛ = 0.691 ± 0.006



A question of pespective: plausible mass scale

Weakly Interacting Massive Particles (WIMPs)
• weak scale mass (10 GeV - 1 TeV)
• weak interaction <σv> ~ 3x10-26 cm3s-1
• produces the observed thermal relic density
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“only” 90 orders of magnitude!

Lots of Beyond Standard Model 
theories predict the existence of 
one of more WIMPs, and other 
dark matter particle candidates

A question of pespective: plausible mass scale
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New 
Physics?

DM

DM

SM

SM

DM = Dark Matter
SM = Standard Model (of Particle Physics)  
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New 
Physics?

DM

DM

SM

SM

Indirect searches
High energy photos, 
neutrinos, cosmic rays

Direct 
searches
Nuclear 
scattering

Collider searches
Missing transverse energy

This talk!

DM = Dark Matter
SM = Standard Model (of Particle Physics)  
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Charged cosmic-rays
Ø Diffusive propagation in the 

Galactic magnetic field
Ø Loss in directionality
=> Spectral signatures
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8 kpc

?

ME

ME

X

X

Charged cosmic-rays
Ø Diffusive propagation in the 

Galactic magnetic field
Ø Loss in directionality
=> Spectral signatures

Gamma-rays and neutrinos
Ø Non-deviated trajectory
Ø Point directly to the source
=> Spectral and spatial signatures
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Dark Matter searches with gamma rays
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(eV) 104 108 1010 1012 1014

HE γ-Rays UHE……X-Rays VHE γ-Rays

Space based
Ground based

Gamma-ray satellites:
• EGRET
• Fermi-LAT

Imaging Atmospheric
Cherenkov Telescopes (IACT)
and Air Shower Particle 
Detectors

(TeV)
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Atmosphere
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Fermi-LAT
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Fermi-LAT

HAWC
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Fermi-LAT

CTA

HAWC
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• Energy range: 20 MeV – 300 GeV

• Effective area ~ 0.9 m2

• Energy resolution ~ 10%

• Angular resolution ~0.15o (GeV)

• Pair conversion detector:

25



MAGIC Canary Island, Spain
La Palma, 2225m a.s.l.
2 telescopes, Ø17m
>2009

VERITAS Arizona, USA
1275m a.s.l.
4 telescopes, Ø12m 
Stereoscopy
>2007

26

H.E.S.S. Namibia
1800m a.s.l.
4 telescopes, Ø12m
stereoscopy 
>2003
HESS 2 : 4+ 1 (Ø28m) telescopes, 2012

6
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Ø Two arrays: North in La Palma (Spain), South 
in Paranal (Chile)

Ø Factor 10 better flux sensitivity

Ø Larger energy coverage, field of view and 
twice better angular and energy resolution
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Ø CTA is a global effort with more than 1,350 scientists and engineers from 210 institutes in 32 
countries involved in directing CTA's science goals and array design.

Ø Brazilian participation:

• Centro Brasileiro de Pesquisas Físicas
• Centro de Ciências Naturais e Humanas – Universidade Federal do ABC
• Departamento de Engenharias e Exatas, Universidade Federal do Parana
• Escola de Artes, Ciências e Humanidades, Universidade de São Paulo
• Escola de Engenharia de Lorena, Universidade de São Paulo
• Instituto de Astronomia, Geofísico, e Ciências Atmosféricas
• Instituto de Física de São Carlos, Universidade de São Paulo
• Instituto de Física – Universidade de São Paulo
• International Centre for Theoretical Physics, Universidade Estadual Paulista
• Nucleo de Astrofisica Teorica, Universidade Cruzeiro do Sul
• Núcleo de Formação de Professores – Universidade Federal de São Carlos



• Wide-angle air shower particle 
detector, complementary to CTA South

• Located at a high-altitude site in South 
America,

• Covering the energy range 100 GeV to 
100 TeV,

• Significant sensitivity improvement 
over HAWC

• Various detector concepts under study

29



ØR&D collaboration founded on July 1st 2019 by 54 partner institutes in 
12 countries + supporting scientists from 11 more countries

ØAims of the collaboration: development, over the next three years, of a 
detailed proposal for the implementation of such an observatory, 
including site selection and technology choice

30



CORSIKA + simple detecctors; altitude of 5000m; larger + denser array

White paper: Science Case for a 
Wide Field-of-View Very-High-
Energy Gamma-Ray Observatory in 
the Southern Hemisphere, SGSO-
alliance [arXiv:1902.08429]
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DM self-annihilation rate :
DM

DM

SM: b, W+, Z, μ+

Primary channels

SM: b, W-, Z, μ- H
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Final states

=> γ, e±, p, ν
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Gamma-ray flux from annihilation of a WIMP:
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Gamma-ray flux from annihilation of a WIMP:

DM self-annihilation rate :
DM

DM

SM: b, W+, Z, μ+

Primary channels

SM: b, W-, Z, μ- H
ad
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d/
or
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ec

ay => γ, e±, p, ν

Final states

=> γ, e±, p, ν

Gamma spectrum: 

Ø typically a continuum with an energy cut-off 
at the DM particle mass

Ø Mono-energetic line signal :
• χχ → γγ, γZ : line at or close to DM particle 
mass
• χχ → ll, WW: Internal Bremsstrahlung

where
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Gamma-ray flux from annihilation of a WIMP:

DM self-annihilation rate :
DM

DM

SM: b, W+, Z, μ+

Primary channels

SM: b, W-, Z, μ- H
ad

ro
ni

sa
tio

n
an

d/
or

 d
ec

ay => γ, e±, p, ν

Final states

=> γ, e±, p, ν

Ø Line of sight integral

Ø Density profile model is needed

Ø Dependence dark matter halo 
modeling

where
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ρNFW(r) =
ρs (r / rs )

−γ

(1+ r / rs )
3−γ

Ø The parameters are found from observation of some tracer dynamics(luminous density,  
star velocity dispersion, velocity anisotropy…)

Ø The DM density at small scale is poorly known
• necessity to take in account both class of models

)(
)( 22

2

0iso rr
rr

c

c

+
= rr

Examples:

Ø Cosmological N-body numerical simulations => Cusp profile
Ø Observation of galaxies dynamics => Cored profile

Cuspy

Cored

Milky-Way

36

std NFW		γ =	1
baryons	steepens	
profile:	γ =	1.2-1.5

Cirelli et al 2010
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Cored
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std NFW		γ =	1
baryons	steepens	
profile:	γ =	1.2-1.5

Cirelli et al 2010



• Contribution of the substructures(sub-halos)  to the 
overall density <= flux ~ ρ2

• Inverse compton scattering emission on CMB

• Adiabatic growth aroundSMBH and IMBH

Ø From astrophysics:

Ø From particle physics:

• Boost in the annihilation cross-section:  Sommerfeld effect

• Radiative corrections to the annihilation spectrum
Latanzzi and Silk , PRD 79 (2009)

HESS ON region for point-like searches

Galaxy cluster

Dwarf galaxy

low E photon (CMB)

e± e±

γ-ray

inverse Compton scattering

β =	v/c

Final state radiation Virtual internal
bremsstrahlung

38



39

DM

DM

SM: b, W+, Z, μ+

Primary channels

SM: b, W-, Z, μ- H
ad
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or
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ec

ay => γ, e±, p, ν

Final states

=> γ, e±, p, ν

Inverse Compton scattering
• on CMB, star-light, 

infrared-light

Bremsstrahlung
• onto gas of interstellar 

medium

Synchrotron radiation
• magnetic field O(μGauss)
• for e± of GeV-TeV
• —> MHz-GHz radio signal



Local Group Galaxies
q Relatively close
q Large DM mass
q Secondary 

radiation may be 
important

Galactic Centre
q Proximity (~8kpc)
q High (possibly) central 

DM concentration :
DM profile : core? cusp?

q High astrophysical
background in gamma-
rays

Galaxy clusters
q High DM annihilation luminosity
q Substructures contribution to the overall DM flux
q Astrophysical background may be important

Dwarf galaxies of the Milky Way
q Many of them within the 100 kpc from Sun
q Extremely DM-dominated environment
q Potential low astrophysical

background

Andromeda Galaxy

Galactic Center in radio

Galaxy Cluster Abell 1689, by HST

Sculptor dwarf galaxy with NOAO CTIO 
Blanco

0.5˚

0.25˚

100 kpc

0.03˚
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Ø Most DM-dominated systems in the Universe
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Ø Most DM-dominated systems in the Universe
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Ø Twenty dwarf spheroidal galaxies observed by Fermi-LAT, 
HAWC, H.E.S.S., MAGIC, and VERITAS

44

Ø In the case of no signal detection 
-> Joint likelihood analysis

Ø Limits on the plane <σv> x mDM

• Armand et al arXiv:2108.13646
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Ø Three channels bƃ, W+W-, τ+τ- , using the J factors from Geringer Sameth et al.

• Combined upper limits are up to 3 times more constraining, depending on the 
annihilation channel and the mass

• Armand et al arXiv:2108.13646
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Ø Three channels bƃ, W+W-, τ+τ- , using the J factors from Geringer Sameth et al.

• Combined upper limits are up to 3 times more constraining, depending on the 
annihilation channel and the mass

• Below ~2 - 30 TeV - DM limits largely dominated by Fermi-LAT

• Above ~2 - 30 TeV - IACTs and HAWC take over

• Armand et al arXiv:2108.13646



• Recent deep observations with wide-field optical imaging surveys have already 
discovered 33 new ultra-faint Milky Way satellites

• The next generation of surveys (i.e., The Rubin Observatory ) should complete our 
census of the ultra-faint dwarfs out to the virial radius of the Milky Way. 

• Legacy data from Fermi-LAT at these locations could easily and immediately be 
analysed when new dSphs are found.

credit A. Drlica-Wagner
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Galaxy clusters
q High DM annihilation luminosity
q Substructures contribution to the overall DM flux
q Astrophysical background may be important

Dwarf galaxies of the Milky Way
q Many of them within the 100 kpc from Sun
q Extremely DM-dominated environment
q Potential low astrophysical

background

Galactic Center in radio

Galaxy Cluster Abell 1689

22

0.5˚

0.25˚

0.03˚

Sculptor dwarf galaxy with NOAO CTIO 
Blanco

Galactic Centre
q Proximity (~8kpc)
q High (possibly) central 

DM concentration :
DM profile : core? cusp?

q High astrophysical
background in gamma-
rays

Local Group Galaxies
q Large DM mass
q Relatively close
q Secondary 

radiation may be 
important location

Andromeda galaxy100 pc



51

§ First-ever conducted deep VHE gamma-ray survey of the Galactic Center region (b < +3.2)
§ 2014-2020 dataset amounts to 546 hours (livetime) towards the GC
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§ First-ever conducted deep VHE gamma-ray survey of the Galactic Center region (b < +3.2)
§ 2014-2020 dataset amounts to 546 hours (livetime) towards the GC
§ Very bright gamma-ray emission along the Galactic pane -> excluded
§ Analysis method : 2D likelihood analysis with spectral and spatial information of signal and 

background 

0.6o
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Cuspy
profile

Ø We assumed an Einasto profile

Ø The spatial morphology can be used to discriminate
between a DM gamma-ray signal and the residual
isotropic hadronc background 
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§ First-ever conducted deep VHE gamma-ray survey of the Galactic Center region (b < +3.2)
§ 2014-2020 dataset amounts to 546 hours (livetime) towards the GC
§ Very bright gamma-ray emission along the Galactic pane -> excluded
§ Analysis method : 2D likelihood analysis with spectral and spatial information of signal and 

background 

For the Einasto profile, strongest limits so far in the TeV mass range: 

• in the WW channel: 3.7×10-26 cm-3 s-1 at 1.5 TeV
• in the ττ channel: 1.2×10-26 cm-3 s-1 at 700 GeV



23 spatial bins

Ø Search for signal in the inner 1o (CTA) and 10o (SWGO) of the Galaxy

• 10
o

Stéphane Guisard
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Excluded region0.6o

23 spatial bins

• 10
o

Ø Search for signal in the inner 1o (CTA) and 10o (SWGO) of the Galaxy
Ø Exclusion of +-0.3o band in latitude to avoid strong astrophysical background
Ø 2D likelihood analysis with spectral and spatial information of signal and background

Stéphane Guisard
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Ø For τ+τ- channel: SWGO more sensitive than CTA for masses > 600 GeV

Ø Combined (LAT,CTA,SWGO) future sensitivity smaller than thermal relic 
cross-section for all masses below 100 TeV

τ+τ- channel

Fermi: Fermi-LAT Collaboration 
PRL 2015 [arXiv:1503.02641]

HESS: HESS Collaboration PRL 
2016 [arXiv:1607.08142]

SWGO: AV, H. Schoorlemmer, A. 
Albert, V. de Souza, J. P. Harding, 
J. Hinton JCAP 2019 
[arXiv:1906.03353 ]

CTA: The CTA Consortium JCAP 
2021 [arXiv:2007.16129]
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τ+τ- channel

EXCLUSION
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Ø For W+W- channel: combined sensitivity smaller than relic-thermal cross-
section (3×10-26 cm-3 s-1 ) for all masses below 80 TeV

Ø For bƃ channel: combined sensitivity smaller than thermal relic cross-
section (3×10-26 cm-3 s-1 ) for all masses below 30 TeV

W+W- channel

AV, H. Schoorlemmer, A. Albert, V. de Souza, J. P. Harding, J. Hinton 
JCAP 2019 [arXiv:1906.03353 ]

bƃ channel
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Ø For masses > 10 TeV, SWGO can be complementary to CTA ->  confirmation of a 
spectrum cut-off  

AV, H. Schoorlemmer, A. Albert, 
V. de Souza, J. P. Harding, J. 
Hinton JCAP 2019 
[arXiv:1906.03353 ]
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DM self-annihilation rate :

DMDM

DM
DM mt

r
»G

DM decay rate :

Gamma-ray flux from decay of a WIMP:

DM

SM: b, W+, Z, μ+

Primary channels

SM: b, W-, Z, μ- H
ad

ro
ni

sa
tio

n
an

d/
or
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ec

ay => γ, e±, p, ν

Final states

=> γ, e±, p, ν

where
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τ+τ- channel

Ø SWGO will have unprecedented sensitivity in the TeV mass range
Ø Better than CTA and Fermi-LAT for all DM particle masses above ∼1 TeV
Ø Less sensitive to diference in density profile shape

AV, H. Schoorlemmer, A. Albert, 
V. de Souza, J. P. Harding, J. 
Hinton JCAP 2019 
[arXiv:1906.03353 ]
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τ+τ- channel

EXCLUSION
AV, H. Schoorlemmer, A. Albert, 
V. de Souza, J. P. Harding, J. 
Hinton JCAP 2019 
[arXiv:1906.03353 ]
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Ø SWGO will have unprecedented sensitivity in the TeV mass range
Ø Better than CTA and Fermi-LAT for all DM particle masses above ∼1 TeV
Ø Less sensitive to diference in density profile shape



Galaxy clusters
q High DM annihilation luminosity
q Substructures contribution to the overall DM flux
q Astrophysical background may be important

Dwarf galaxies of the Milky Way
q Many of them within the 100 kpc from Sun
q Extremely DM-dominated environment
q Potential low astrophysical

background

Galactic Center in radio

Galaxy Cluster Abell 1689

22

0.25˚

0.03˚

Sculptor dwarf galaxy with NOAO CTIO 
Blanco

Local Group Galaxies
q Large DM mass
q Relatively close
q Secondary 

radiation may be 
important location

Andromeda galaxy100 pc

Galactic Centre
q Proximity (~8kpc)
q Possibly high central DM 

concentration :
DM profile : core? cusp?

q High astrophysical
background in gamma-
rays

Galactic Center in radio

0.5˚
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• Large dark matter content 
Mvir ~ 1011 MSun

• Proximity to Earth 
D ~ 50 kpc



66

• Large dark matter content 
Mvir ~ 1011 MSun

• Proximity to Earth 
D ~ 50 kpc

• Australian Square Kilometre Array 
Pathfinder (ASKAP)
36 antennas, each 12 m in diameter
Commissioning and early science

• Evolutionary Map of the Universe (EMU)
Survey of the Southern sky (3 x 104 deg2)
at ~ 1 GHz with ~10’’ resolution and
sensitivity of 30 mJy/beam
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Synchrotron radiation • Dependent on the magnetic field 
(lower limit > 1 μG)

• Total magnetic field strength 
estimated as 4.3 μG [Gaensler+, 
Science 2005]

• Very strong bounds
• Thermal cross-section excluded for DM masses below  480 GeV (bb), 

358 GeV (W+W-), 192 GeV (τ+τ-) , 164 GeV (μ+μ-)



Credits: T. Linden, Univ. of Chicago

Residual GeV emission in the Galactic Center by Fermi-LAT
Ø Initial claims by Goodenough & Hooper (2009) [see also Vitale & 

Morselli (2009)]
Ø Controversial discussion in the community for six years
Ø In 2015, the existence of "GeV excess" finally got the blessing of 

the Fermi-LAT collaboration
Ø Is it a sign of DM?

A. Viana                                                                                         XL ENFPC 2019 68



Slide adapted from C. WenigerPapers that looked at data
• Goodenough & Hooper, arXiv:0910.2998
• Vitale & Morselli, 2009
• Hooper & Goodenough, Phys. Lett. B697 (2011) 412
• Hooper & Linden, Phys. Rev. D84 (2011) 123005
• Boyarsky, Malyshev & Ruchayskiy, Phys. Lett. B705 (2011) 165
• Abazajian & Kaplinghat, PRD 86 (2012) 083511
• Hooper & Slatyer, Phys. Dark Univ. 2 (2013) 118
• Gordon & Macias, Phys. ReV. D88 (2013) 083521
• Macias & Gordon, PRD 89 (2014) 063515
• Abazajian, Canac, Horiuchi, Kaplinghat, Phys. Rev. D90 (2014) 023526
• Cholis, Evoli, Calore, Linden, Weniger, Hooper, JCAP 1512 (2015) 12
• Calore, Cholis & Weniger, JCAP 1503 (2015) 038
• Zhou, Liang, Huang, Li, Fan, Chang, Phys. Rev. D91 (2015) 123010
• Gaggero, Taoso, Urbano, Valli & Ullio, JCAP 1512 (2015) 056
• Daylan, Finkbeiner, Hooper, Linden, Portillo et al., Physics of Dark Universe 12 (2016) 1
• De Boer, Gebauer, Neumann, Biermann, arXiv:1610.08926 (ICRC 2016 proceedings)
• Huang, Ensslin & Selig, JCAP 1604 (2016) 030
• Carlson, Linden, Profumo, Phys. Rev. D94 (2016) 063504
• Bartels, Krishnamurthy, Weniger, Phys. Rev. Lett. 116 (2016) 5
• Macis, Gordon, Crocker, Coleman, Paterson, arXiv:1611.06644
• Lee, Lisanti, Safdi, Slatyer, Xue, Phys. Rev. Lett. 116 (2016) 5
• Ajello et al. 2016, Astrophys. J. 819, 44
• Ackermann et al., 2017, Astrophys. J. 840, 43
• Ajello et al., 2017, arXiv:1705.00009 
• Macias, Horiuchi, Kaplinghat,Gordon, Crocker, Nataf,  JCAP arXiv:1901.03822
• Leane & Slatyer, PRL arXiv:1904.08430
• Cholis, Zhong, McDermott, Surdutovich PRD arXiv:2112.09706
• Martin Pohl, Macias, Coleman, Gordon, ApJ arXiv:2203.11626

Excess is likely DM
Excess is there
Excess is likely not DM
Excess is not there

+hundreds of DM theory papers
+a few papers missed
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Neutrino flux from annihilation of a WIMP:

DM self-annihilation rate :
DM

DM

SM: b, W+, Z, μ+

Primary channels

SM: b, W-, Z, μ- H
ad

ro
ni

sa
tio

n
an

d/
or
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ec

ay => γ, e±, p, ν

Final states

=> γ, e±, p, ν
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The ANTARES Collaboration arXiv:1912.05296
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The IceCube Collaboration arXiv:1804.03848 & arXiv:2107.11527
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EQUILIBRIUM 

capture rate

DM decay into neutrinos DM ann/dec into new mediator 
(secluded models)
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• Limits from IceCube and ANTARES comparable to DM direct detection experiments



Dark Matter searches with charged cosmic rays
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8 kpc

?

ME

ME

X

X

Charged cosmic-rays
Ø Diffusive propagation in the 

Galactic magnetic field
Ø Loss in directionality
=> Spectral signatures
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[excellent review: Lavalle & Salati (2012)]



Ø Detector de raios cósmicos na Estação Espacial Internacional: AMS-2Ø Cosmic-ray detector at International 
Space Station: AMS-2

Ø Taking data since 2011
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AMS-02 CERN press conference
April 2015

• Shown as excess above the expectations from secondary production 
(ICRC 2015: “Theoretical prediction based on pre-AMS knowledge of 
cosmic ray propagation”)

• Antiprotons traditionally well modelled by our CR knowledge
• —> Useful to set stringent constraints on DM contribution.
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• However quite some uncertainty affects the prediction of the astro 
only antiproton signal.

• Situation: No excess observed above astrophysical background, when 
all uncertainties are taken into account

• Only upper limits
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Cuoco et al. arXiv:1711.05274.
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Positron energy

• Anomaly: a rise in the positron fraction for E > 10 GeV
• From CR propagation physics, the ratio is expected to decrease for all 

propagation models.
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However, dark matter interpretation:

ØOnly annihilation into leptons (“leptophilic” DM)
ØMassive particle (~TeV)
ØToo large annihilation cross-section: O(10-21-10-24 cm-3 s-1) 
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Ø Annihilation into leptons produces inverse 
compton emission, not seen in gamma -> 
gamma-ray consraints

Ø Tension with CMB

Dark matter interpretation of 
positron fractions seems to 
be in tension with gamma-
ray observations!

Cirelli+’09 and 13
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Cholis&Hooper PRD’13

Boudaud+ A&A’14

Primary positrons by pair production 
(e+e-) in pulsars magnetosphere

How to discriminate DM from 
astrophysical emission?

a. Spectrum shape(hard)
b. Anisotropy (signal direction)?
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Didn’t have 
time to 
mention!

LHAASO: 
arXiv:2210.15989
AUGER: 
arXiv:2203.08854
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Dark Matter In Extreme Astrophysical Environments: arXiv:2203.07984 



92



W+W- channel bƃ channel

Ø Unprecedented sensitivity in the TeV mass range
Ø Better than CTA and Fermi-LAT for all DM particle masses above ∼1 TeV
Ø Less sensitive to diference in density profile shape

AV, H. Schoorlemmer, A. Albert, V. de Souza, J. P. 
Harding, J. Hinton JCAP 2019 [arXiv:1906.03353 ]
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Ø Particle model dependent: in Simplified DM 
models it depends on the mediators

Ø Indirect detection is most sensitive for pseudo-
scalar  DM at >200 GeV

Ø For a complete understanding of the nature of 
dark matter these different techniques are 
complementary and essential 

M. Meyer

pMSSM (Nature Physics 13, 224–231 (2017)

LHC
LHC+CTA CTA

CMS-EXO-16-037


