

Dark Matter in the multi-messenger era

Workshop on High-energy astrophysics in the multimessenger era

May 2023 Erlangen - Germany

<u>Aion Viana</u> Instituto de Física de São Carlos - USP

1. Indirect detection of dark matter: basic principles

- 2. Indirect searches for dark matter with gamma-rays (and neutrinos): instruments and recent results
- 3. Indirect searches for dark matter with neutrinos: instruments and recent results
- 4. Indirect searches for dark matter with charged cosmic-rays: instruments and recent results

Disclaimer: Very large topic. Here I present a personal selection of recent results

Introduction

Two hypothesis:

1. Dark matter does exist

Most **gravitational mass** of galaxies and galaxy clusters (Zwicky 1937)

Pratically **non-collisional**: Bullet Cluster (Clowe+ 2006)

Non-barionic: Big bang nucleosynthesis, barionic accoustic oscillations, WMAP(2010), Planck(2015)

Introduction

Two hypothesis:

1. Dark matter does exist

Pratically **non-collisional**: Bullet Cluster (Clowe+ 2006)

Non-barionic: Big bang nucleosynthesis, barionic accoustic oscillations, WMAP(2010), Planck(2015)

Introduction

Two hypothesis:

- 1. Dark matter does exist
- 2. Dark matter is a particle that couples non-gravitationally to Standard Model particles

Annihilation or decay of DM leads to the production of stable particles of Standard Model

Relic density and WIMP miracle

Standard Cosmology Model: ACDM

 $Ω_b = 0.048 \pm 0.001$ $Ω_{cdm} = 0.258 \pm 0.006$ $Ω_\Lambda = 0.691 \pm 0.006$

Relic density and WIMP miracle

Standard Cosmology Model: ACDM

Boltzman equation in comoving volume $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle \left[n_{\chi}^2 - (n_{\chi}^{eq})^2 \right]$

Relic density and WIMP miracle

Standard Cosmology Model: ACDM

Boltzman equation in comoving volume $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle \left[n_{\chi}^2 - (n_{\chi}^{eq})^2 \right]$

Dark matter particle candidates

A question of pespective: plausible mass scale

thermal

Weakly Interacting Massive Particles (WIMPs)

- weak scale mass (10 GeV 1 TeV)
- weak interaction $\langle \sigma v \rangle \sim 3x10^{-26} \text{ cm}^3 \text{s}^{-1}$
- produces the observed thermal relic density

particles

weak scale (1 TeV)

Dark matter particle candidates

A question of pespective: plausible mass scale

"only" 90 orders of magnitude!

Lots of Beyond Standard Model theories predict the existence of one of more WIMPs, and other dark matter particle candidates

DM = Dark Matter SM = Standard Model (of Particle Physics)

DM = Dark Matter SM = Standard Model (of Particle Physics)

DM = Dark Matter SM = Standard Model (of Particle Physics)

DM = Dark Matter SM = Standard Model (of Particle Physics)

This talk!

DM = Dark Matter SM = Standard Model (of Particle Physics)

Dark matter messengers in the Galaxy

Dark matter messengers in the Galaxy

Dark matter messengers in the Galaxy

=> Spectral and spatial signatures

Dark Matter searches with gamma rays

The extreme electromagnetic universe

Fermi telescope: 2008 - Present

- Energy range: 20 MeV 300 GeV
- Effective area ~ 0.9 m²
- Energy resolution ~ 10%
- Angular resolution ~0.15° (GeV)
- Pair conversion detector:

The current IACT world

VERITAS Arizona, USA 1275m a.s.l. 4 telescopes, Ø12m Stereoscopy >2007

MAGIC Canary Island, Spair

La Palma, 2225m a.s.l. 2 telescopes, Ø17m >2009

H.E.S.S. Namibia

1800m a.s.l. 4 telescopes, Ø12m stereoscopy >2003 HESS 2 : 4+ 1 (Ø28m) telescopes, 2012

The future IACT world: Cherenkov Telescope Array

- Two arrays: North in La Palma (Spain), South in Paranal (Chile)
- Factor 10 better flux sensitivity
- Larger energy coverage, field of view and twice better angular and energy resolution

The future IACT world: Cherenkov Telescope Array

CTA is a global effort with more than 1,350 scientists and engineers from 210 institutes in 32 countries involved in directing CTA's science goals and array design.

Brazilian participation:

- Centro Brasileiro de Pesquisas Físicas
- Centro de Ciências Naturais e Humanas Universidade Federal do ABC
- Departamento de Engenharias e Exatas, Universidade Federal do Parana
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo
- Escola de Engenharia de Lorena, Universidade de São Paulo
- Instituto de Astronomia, Geofísico, e Ciências Atmosféricas
- Instituto de Física de São Carlos, Universidade de São Paulo
- Instituto de Física Universidade de São Paulo
- International Centre for Theoretical Physics, Universidade Estadual Paulista
- Nucleo de Astrofisica Teorica, Universidade Cruzeiro do Sul
- Núcleo de Formação de Professores Universidade Federal de São Carlos

Southern Wide-field Gamma-ray Observatory (SWGO)

The SWGO collaboration

- R&D collaboration founded on July 1st 2019 by 54 partner institutes in 12 countries + supporting scientists from 11 more countries
- Aims of the collaboration: development, over the next three years, of a detailed proposal for the implementation of such an observatory, including site selection and technology choice

Countries in SWGO Institutes

Argentina*, Brazil, Chile, Czech Republic, Germany*, Italy, Mexico, Peru, Portugal, South Korea, United Kingdom, United States*

Supporting scientists

Australia, Bolivia, Costa Rica, France, Japan, Poland, Slovenia, Spain, Switzerland, Turkey

*also supporting scientists

A straw man design for SWGO

- Based on established performances (e.g. HAWC)
- CORSIKA + simple detecctors; altitude of 5000m; larger + denser array

where

$$\overline{J}(\Delta\Omega) = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega \int_{\text{l.o.s.}} \rho^2[r(s)] ds$$

- Line of sight integral
- Density profile model is needed
- Dependence dark matter halo modeling

Dark Matter halo modeling

Observation of galaxies dynamics => Cored profile

- The parameters are found from observation of some tracer dynamics(luminous density, star velocity dispersion, velocity anisotropy...)
- The DM density at small scale is poorly known
 - necessity to take in account both class of models
Dark Matter halo modeling

- Cosmological N-body numerical simulations => Cusp profile
- Observation of galaxies dynamics => Cored profile

- The parameters are found from observation of some tracer dynamics(luminous density, star velocity dispersion, velocity anisotropy...)
- The DM density at small scale is poorly known
 - necessity to take in account both class of models

Additional contributions to the DM annihilation flux

From astrophysics:

• Contribution of the substructures(sub-halos) to the overall density <= flux ~ ρ^2

Secondary radiation from DM

Dark matter targets

Galactic Centre

- Proximity (~8kpc)
- High (possibly) central DM concentration :

DM profile : core? cusp?

High astrophysical background in gammarays

Dwarf galaxies of the Milky Way

- □ Many of them within the 100 kpc from Sun
- Extremely DM-dominated environment
- Potential low astrophysical

background

Galaxy clusters

- ☐ High DM annihilation luminosity
- □ Substructures contribution to the overall DM flux
- Astrophysical background may be important

Local Group Galaxies

- Relatively close
- □ Large DM mass
- Secondary radiation may be important

Dark matter targets

Galactic Centre

- Proximity (~8kpc)
- Possibly high central DM concentration :
- DM profile : core? cusp?
- High astrophysical background in gamma-rays

Dwarf galaxies of the Milky Way

- Many of them within the 100 kpc from Sun
- Extremely DM-dominated environment
- Potential low astrophysical

background

Galaxy clusters High DM annihila

- High DM annihilation luminosity
- □ Substructures contribution to the overall DM flux
- Astrophysical background may be important

Local Group Galaxies

- □ Large DM mass
- Relatively close
- Secondary radiation may be important location

Dwarf galaxies of the Milky Way

Dwarf galaxies of the Milky Way

Combined Dark Matter Searches with gamma-ray observatories

Twenty dwarf spheroidal galaxies observed by Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS

Source name	Experiments	Distance
		(kpc)
Bootes I	Fermi-LAT, HAWC, VERITAS	66
Canes Venatici I	<i>Fermi</i> -LAT	218
Canes Venatici II	Fermi-LAT, HAWC	160
Carina	Fermi-LAT, H.E.S.S.	105
Coma Berenices	Fermi-LAT, HAWC, H.E.S.S., MAGIC	44
Draco	Fermi-LAT, HAWC, MAGIC, VERITAS	76
Fornax	Fermi-LAT, H.E.S.S.	147
Hercules	Fermi-LAT, HAWC	132
Leo I	Fermi-LAT, HAWC	254
Leo II	Fermi-LAT, HAWC	233
Leo IV	Fermi-LAT, HAWC	154
Leo T	Fermi-LAT	417
Leo V	<i>Fermi</i> -LAT	178
Sculptor	Fermi-LAT, H.E.S.S.	86
Segue I	Fermi-LAT, HAWC, MAGIC, VERITAS	23
Segue II	<i>Fermi</i> -LAT	35
Sextans	Fermi-LAT, HAWC	86
Ursa Major I	Fermi-LAT, HAWC	97
Ursa Major II	Fermi-LAT, HAWC, MAGIC	32
Ursa Minor	Fermi-LAT, VERITAS	76

• Armand et al arXiv:2108.13646

In the case of no signal detection -> Joint likelihood analysis

 \succ Limits on the plane $\langle \sigma v \rangle \propto m_{DM}$

Combined Dark Matter Searches with gamma-ray observatories

 \succ Three channels bb, W⁺W⁻, τ + τ -, using the J factors from Geringer Sameth et al.

Armand et al arXiv:2108.13646

Combined upper limits are up to 3 times more constraining, depending on the annihilation channel and the mass

Combined Dark Matter Searches with gamma-ray observatories

 \succ Three channels bb, W⁺W⁻, τ + τ -, using the J factors from Geringer Sameth et al.

Armand et al arXiv:2108.13646

- Combined upper limits are up to 3 times more constraining, depending on the annihilation channel and the mass
- Below ~2 30 TeV DM limits largely dominated by Fermi-LAT

Combined Dark Matter Searches with gamma-ray observatories

> Three channels bb, W⁺W⁻, τ + τ -, using the J factors from Geringer Sameth et al.

Armand et al arXiv:2108.13646

- Combined upper limits are up to 3 times more constraining, depending on the annihilation channel and the mass
- Below ~2 30 TeV DM limits largely dominated by Fermi-LAT
- Above ~2 30 TeV IACTs and HAWC take over

Future prospects on dSphs

- Recent deep observations with wide-field optical imaging surveys have already discovered 33 new ultra-faint Milky Way satellites
- The next generation of surveys (i.e., The Rubin Observatory) should complete our census of the ultra-faint dwarfs out to the virial radius of the Milky Way.
- Legacy data from Fermi-LAT at these locations could easily and immediately be analysed when new dSphs are found.

Future prospects on dSphs

Dark matter targets

Galactic Centre

- Proximity (~8kpc)
 - High (possibly) central DM concentration :

DM profile : core? cusp?

High astrophysical background in gamma-rays

Dwarf galaxies of the Milky Way

- □ Many of them within the 100 kpc from Sun
- Extremely DM-dominated environment
- Potential low astrophysical

background

- □ High DM annihilation luminosity
- □ Substructures contribution to the overall DM flux
- Astrophysical background may be important

Local Group Galaxies

- □ Large DM mass
- Relatively close
- Secondary radiation may be important location

H.E.S.S. Inner Galaxy Survey

- First-ever conducted deep VHE gamma-ray survey of the Galactic Center region (b < +3.2)
- 2014-2020 dataset amounts to 546 hours (livetime) towards the GC

H.E.S.S. Inner Galaxy Survey

- First-ever conducted deep VHE gamma-ray survey of the Galactic Center region (b < +3.2)
- 2014-2020 dataset amounts to 546 hours (livetime) towards the GC
- Very bright gamma-ray emission along the Galactic pane -> excluded
- Analysis method : 2D likelihood analysis with spectral and spatial information of signal and background

Dark Matter distribution in the GC

- > We assumed an Einasto profile
- The spatial morphology can be used to discriminate between a DM gamma-ray signal and the residual isotropic hadronc background

H.E.S.S. Inner Galaxy Survey

- First-ever conducted deep VHE gamma-ray survey of the Galactic Center region (b < +3.2)
- 2014-2020 dataset amounts to 546 hours (livetime) towards the GC
- Very bright gamma-ray emission along the Galactic pane -> excluded
- Analysis method : 2D likelihood analysis with spectral and spatial information of signal and background

54

> Search for signal in the inner 1° (CTA) and 10° (SWGO) of the Galaxy

- Search for signal in the inner 1° (CTA) and 10° (SWGO) of the Galaxy
- Exclusion of +-0.3° band in latitude to avoid strong astrophysical background
- > 2D likelihood analysis with spectral and spatial information of signal and background

- For $\tau^+\tau^-$ channel: SWGO more sensitive than CTA for masses > 600 GeV
- Combined (LAT,CTA,SWGO) future sensitivity smaller than thermal relic cross-section for all masses below 100 TeV

- For $\tau^+\tau^-$ channel: SWGO more sensitive than CTA for masses > 600 GeV
- Combined (LAT,CTA,SWGO) future sensitivity smaller than thermal relic cross-section for all masses below 100 TeV

W⁺W⁻ channel SWGO GC Halo 10 yr CTA GC Halo 500 hr AT 15 dSphs 6 vr

bb channel

- For W+W- channel: combined sensitivity smaller than relic-thermal cross- \triangleright section (3×10⁻²⁶ cm⁻³ s⁻¹) for all masses below 80 TeV
- For **bb** channel: combined sensitivity smaller than thermal relic cross-section (3×10⁻²⁶ cm⁻³ s⁻¹) for all masses below 30 TeV

Complementarity at the highest energies

For masses > 10 TeV, SWGO can be complementary to CTA -> confirmation of a spectrum cut-off

DM decay sensitivity

Gamma-ray flux from decay of a WIMP:

$$\frac{\mathrm{d}\Phi_{\mathrm{Dec}}(\Delta\Omega, E_{\gamma})}{\mathrm{d}E_{\gamma}} = \left(\frac{1}{4\pi} \frac{1}{\tau_{\mathrm{DM}}M_{\mathrm{DM}}} \frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}}\right) \times \left(D(\Delta\Omega)\right)$$

where

$$D(\Delta \Omega) = \int_{\Delta \Omega} \int_{\text{l.o.s.}} d\Omega \, ds \, \rho_{\text{DM}}[r(s,\Omega)]$$

GC halo: DM decay sensitivity

- SWGO will have unprecedented sensitivity in the TeV mass range
- Better than CTA and Fermi-LAT for all DM particle masses above ~1 TeV
- Less sensitive to diference in density profile shape

GC halo: DM decay sensitivity

- SWGO will have unprecedented sensitivity in the TeV mass range
- Better than CTA and Fermi-LAT for all DM particle masses above ~1 TeV
- Less sensitive to diference in density profile shape

Dark matter targets

Galactic Centre

- Proximity (~8kpc)
- Possibly high central DM concentration :

DM profile : core? cusp?

High astrophysical background in gammarays

Dwarf galaxies of the Milky Way

- □ Many of them within the 100 kpc from Sun
- Extremely DM-dominated environment
- Potential low astrophysical

background

High DM annihilation luminosity

- □ Substructures contribution to the overall DM flux
- Astrophysical background may be important

Local Group Galaxies

- □ Large DM mass
- □ Relatively close
- Secondary radiation may be important location

Large Magellanic Cloud

- Large dark matter content $M_{vir} \sim 10^{11} M_{Sun}$
- Proximity to Earth
 D ~ 50 kpc

Credit: David Darling

Large Magellanic Cloud observed by ASKAP

- Large dark matter content $M_{vir} \sim 10^{11} M_{Sun}$
- Proximity to Earth
 D ~ 50 kpc

Credit: David Darling

- Australian Square Kilometre Array Pathfinder (ASKAP)
 36 antennas, each 12 m in diameter Commissioning and early science
- Evolutionary Map of the Universe (EMU) Survey of the Southern sky (3 x 10⁴ deg²) at ~ 1 GHz with ~10" resolution and sensitivity of 30 mJy/beam

Limits to DM from LMC by ASKAP

- Very strong bounds
- Thermal cross-section excluded for DM masses below 480 GeV (bb), 358 GeV (W+W-), 192 GeV (τ + τ -) , 164 GeV (μ + μ -)

"Galactic Center GeV Excess"

Residual GeV emission in the Galactic Center by Fermi-LAT

- Initial claims by Goodenough & Hooper (2009) [see also Vitale & Morselli (2009)]
- Controversial discussion in the community for six years
- In 2015, the existence of "GeV excess" finally got the blessing of the Fermi-LAT collaboration
- ➢ Is it a sign of DM?

Literature overview

Papers that looked at data

- Goodenough & Hooper, arXiv:0910.2998
- Vitale & Morselli, 2009
- Hooper & Goodenough, Phys. Lett. B697 (2011) 412
- Hooper & Linden, Phys. Rev. D84 (2011) 123005
- Boyarsky, Malyshev & Ruchayskiy, Phys. Lett. B705 (2011) 165
- Abazajian & Kaplinghat, PRD 86 (2012) 083511
- Hooper & Slatyer, Phys. Dark Univ. 2 (2013) 118
- Gordon & Macias, Phys. ReV. D88 (2013) 083521
- Macias & Gordon, PRD 89 (2014) 063515
- Abazajian, Canac, Horiuchi, Kaplinghat, Phys. Rev. D90 (2014) 023526
- Cholis, Evoli, Calore, Linden, Weniger, Hooper, JCAP 1512 (2015) 12
- Calore, Cholis & Weniger, JCAP 1503 (2015) 038
- Zhou, Liang, Huang, Li, Fan, Chang, Phys. Rev. D91 (2015) 123010
- Gaggero, Taoso, Urbano, Valli & Ullio, JCAP 1512 (2015) 056
- Daylan, Finkbeiner, Hooper, Linden, Portillo et al., Physics of Dark Universe 12 (2016) 1
- De Boer, Gebauer, Neumann, Biermann, arXiv:1610.08926 (ICRC 2016 proceedings)
- Huang, Ensslin & Selig, JCAP 1604 (2016) 030
- Carlson, Linden, Profumo, Phys. Rev. D94 (2016) 063504
- Bartels, Krishnamurthy, Weniger, Phys. Rev. Lett. 116 (2016) 5
- Macis, Gordon, Crocker, Coleman, Paterson, arXiv:1611.06644
- Lee, Lisanti, Safdi, Slatyer, Xue, Phys. Rev. Lett. 116 (2016) 5
- Ajello et al. 2016, Astrophys. J. 819, 44
- Ackermann et al., 2017, Astrophys. J. 840, 43
- Ajello et al., 2017, arXiv:1705.00009
- Macias, Horiuchi, Kaplinghat, Gordon, Crocker, Nataf, JCAP arXiv:1901.03822
- Leane & Slatyer, PRL arXiv:1904.08430
- Cholis, Zhong, McDermott, Surdutovich PRD arXiv:2112.09706
- Martin Pohl, Macias, Coleman, Gordon, ApJ arXiv:2203.11626

Excess is likely DM Excess is there Excess is likely not DM Excess is not there

+hundreds of DM theory papers+a few papers missed

Slide adapted from C. Weniger

High-energy telescopes: past-present-future

R. K. LEANE

ENERGY

What about neutrinos?

Neutrinos experiments: past-present-future

Neutrino constraints to annihilation

Neutrino constraints to decay

The IceCube Collaboration arXiv:1804.03848 & arXiv:2107.11527

Dark matter capture in the Sun

Neutrinos constraint to scattering cross-section

Limits from IceCube and ANTARES comparable to DM direct detection experiments

Dark Matter searches with charged cosmic rays

Transport equation of charged CRs

spectrum

Salati, Chardonnay, Barrau, Donato, Taillet, Fornengo, Maurin, Brun... '90s, '00s

$$\frac{\partial f}{\partial t} - K(E) \cdot \nabla^2 f - \frac{\partial}{\partial E} \left(b(E)f \right) + \frac{\partial}{\partial z} (V_c f) = Q_{\text{inj}} - 2h\delta(z)\Gamma_{\text{spall}} f$$
diffusion energy loss convective wind source spallations funcer

Illustration of CRs propagation

Diffusion on magnetic inhomogeneities

R ^{0.6} [excellent review: Lavalle & Salati (2012)]

Most relevant assumption:

- Cylindrical symmetry
- Homogeneous diffusion coefficient

Most relevant parameters:

- Diffusion zone height, L
- Diffusion constant, D

R

Detecting charged CRs at GeV-TeV

- Cosmic-ray detector at International Space Station: AMS-2
- Taking data since 2011

Data Signature of Various Particles in Each Detector

Primary production of CRs from dark matter

Proton/anti-proton ratio

- Shown as excess above the expectations from secondary production (ICRC 2015: "Theoretical prediction based on pre-AMS knowledge of cosmic ray propagation")
- Antiprotons traditionally well modelled by our CR knowledge
- —> Useful to set stringent constraints on DM contribution.

Proton/anti-proton ratio

- However quite some uncertainty affects the prediction of the astro only antiproton signal.
- Situation: No excess observed above astrophysical background, when all uncertainties are taken into account
- Only upper limits

Constraints to annihilation from antiprotons

Positron fraction

- Anomaly: a rise in the positron fraction for E > 10 GeV
- From CR propagation physics, the ratio is expected to decrease for all propagation models.

Positron fraction from DM

However, dark matter interpretation:

- Only annihilation into leptons ("leptophilic" DM)
- Massive particle (~TeV)
- Too large annihilation cross-section: O(10⁻²¹-10⁻²⁴ cm⁻³ s⁻¹)

Positron fraction from DM

- Annihilation into leptons produces inverse compton emission, not seen in gamma -> gamma-ray consraints
- Tension with CMB

Dark matter interpretation of positron fractions seems to be in tension with gammaray observations!

Other explanations

Primary positrons by pair production (e+e-) in pulsars magnetosphere

How to discriminate DM from astrophysical emission?

a. Spectrum shape(hard)b. Anisotropy (signal direction)?

Boudaud+ A&A'14

Cosmic-ray detectors: past-present-future

Cosmic-ray detectors: past-present-future

COSMIC-RAY TELESCOPES

Other new interesting things I didn't mention

Dark Matter In Extreme Astrophysical Environments: arXiv:2203.07984

DM mass (eV)

Thank you!

GC halo: DM decay sensitivity

W⁺W⁻ channel

bb channel

- Unprecedented sensitivity in the TeV mass range
- Better than CTA and Fermi-LAT for all DM particle masses above ~ 1 TeV
- Less sensitive to diference in density profile shape

Complementarity to direct detection and

accelerators

- Particle model dependent: in Simplified DM models it depends on the mediators
- Indirect detection is most sensitive for pseudoscalar DM at >200 GeV
- For a complete understanding of the nature of dark matter these different techniques are complementary and essential

Table: Summary of suppression effects		
OPERATOR	ID	DD
SCALAR	v^2	1
PSEUDO SCALAR	1	$(ec{s}_\chi\cdotec{q})(ec{s}_N\cdotec{q})$
VECTOR	1	1
AXIAL VECTOR	m_q^2, v^2	$ec{s}_{\chi} \cdot ec{s}_{ec{N}}_{M.\ Meyer}$

