

DISCO Experiment

Amala Augusthy University of Mainz, Germany augustha@uni-mainz.de October 2023

DISCO EXPERIMENT

- Directionality In Scintillation Observer (DISCO) detector
 - $\circ~$ Demonstrate the sepeartion of Cherenkov and Scintillation light
 - Charecterize Water Based Liquild Scintillators (WbLS)
- WbLS \rightarrow water + scintillator
- Properties of WbLS
 - o Tunable light yield and timing profile
 - \circ Low energy threshold
 - High light yield
 - Directional information
 - Increased attenuation length

DISCO EXPERIMENT

- 3 main components:
 - \circ Muon tracker
 - \circ Test cell
 - Light detectionsystem
- Test particles muons

detection system

DISCO EXPERIMENT: THE THREE COMPONENTS

MUON TRACKER

- Eight planes, each plane
 consists of eight 19 cm
 long scintillating rods
- Read-out using SiPMs
- Provide external trigger
 signal
- Reconstruct muon tracks
- Placed above the test cell

TEST CELL

- Cylindrical steel tank
 enclosed with two
 plexiglass planes
- $\circ~$ Detection volume ~ 14 L
- Height : 20 cm
- Diameter : 30 cm
- Can be filled with water, LS, WbLS
- $\circ~$ Currently filled with water

LIGHT DETECTION SYSTEM

- Cherenkov photons detected using sixteen 1" PMTs placed below the test cell.
- PMTs arranged in two concentric circles of radii 40 mm and 110 mm.

DAQ

- PMT signal is amplified by a factor of 10
- External trigger:
 Muon tracker + PMT signal
- Offline analysis → Extract hit time and charge

A schematic of the DAQ

TRACK RECONSTRUCTION

- Triggering on muons passing through the cell
- The track is described by the point at which muon enters and exits the DISCO test cell:
 - Entry point (A) (x_1, y_1, z_1)
 - Exit point (B) (x_2, y_2, z_2)
- Known parameters z_1 , z_2
- Unknown parameters x_1, y_1, x_2, y_2
- Track parameters are obtained by minimizing the sum of time based chi-square and log likelihood (for charge) function:

EVENT DISPLAY

0

MEASURES OF GOODNESS OF RECONSTRUCTION PROCEDURE

- Quantitative assessment: Compare reconstructed tracks with tracks obtained from muon tracker
- Perform qualitative assessment of track reconstruction algorithm using the distributions:
 - Entry Points
 - Exit Points
 - Radial distances of entry and exit points
 - Angular distributions Zenith and Azimuthal angle

DISTRIBUTION OF ENTRY AND EXIT POINTS

- Number of muons detected on a surface of radius $r \propto \pi r^2$
- Mostly uniform distribution
- Slight clustering of events towards the inner PMTs

ANGULAR DISTRIBUTIONS

• Zenith angle is defined as:

$$\theta = \frac{\pi}{2} - \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

• Distribution of muons is described by $\cos^2 \theta$.

• Azimuth angle is defined as:

$$\phi = \tan^{-1} \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

• Azimuth angle distribution of muons is uniform.

SUMMARY AND NEXT STEPS

- DISCO: lab scale experiment to charecterize WbLS
- Muon tracks were reconstructed by combining the PMT hit-time (χ_t^2) and charge information (log likelihood)
- Next Steps:
 - Replace water with WbLS in test cell and take data
 - Replace PMTs at the bottom with LAPPD → enables precise track reconstruction. Check out Noah's talk for more on LAPPDs

