PHOTOSENSOR TESTING IN XEBRA FOR DARWIN

Tiffany Luce universitätfreiburg

DARWIN

Project of a next generation liquid
 xenon based dark matter detector

 Detects xenon scintillation light from the interaction

• Therefore needs photosensors

PHOTOSENSORS REQUIREMENTS

Low radioactivity

Vacuum ultraviolet (VUV) sensitivity and high photon detection efficiency

universität freiburg

Stable performance at cryogenic temperature and over time

Low dark count rate

Time resolution

Low power consumption

DARWIN

CURRENT SOLUTION IN XENON

DIRTY & EXPENSIVE

Cons of PMTs

universität freiburg

Neutron rate induced by the detector's materials

Material	Unit	$^{238}\mathrm{U}$	226 Ra	$^{232}\mathrm{Th}$	$^{228}\mathrm{Th}$	$^{60}\mathrm{Co}$
Titanium	$\mathrm{mBq/kg}$	< 1.6	< 0.09	0.28	0.25	< 0.02
\mathbf{PTFE}	m mBq/kg	< 1.2	0.07	$<\!0.07$	0.06	0.027
Copper	m mBq/kg	< 1.0	< 0.035	< 0.033	< 0.026	< 0.019
PMT	$\mathrm{mBq/unit}$	8.0	0.6	0.7	0.6	0.84
Electronics	$\mathrm{mBq/unit}$	1.10	0.34	0.16	0.16	< 0.008

Activity from the detector's materials

 \rightarrow 3 to 30 times dirtier per unit than all other materials per kilo !

~ 5000 € per PMT Would need 1700 units for DARWIN

OTHER AVAILABLE SOLUTIONS

HEIKA CHIP

Digital SiPMs made of an array of single photon avalanche diodes (SPADs) read out individually

Lower power consumption Better spatial resolution However, less filling because of readout electronics Each SPAD can individually be turned off

universität freiburg

 \Box

XeBRA testing

PMT COMPARISON

- First ever test of this chip in cryogenic conditions with high voltage applied
- $_{\circ}$ Shine a LED through the PTFE
- $_{\circ}$ Compare PMT and DSiPM
 - Quantum efficiency
 - Time resolution

- Single photon detection
- High # of photons saturation

THANKS FOR YOUR ATTENTION !

Let's fill this column !

	3" PMT	DSiPM
Dark count rate	8x10 ⁻³ Hz	?
Quantum efficiency	35%	?
Gain	Up to 10 ⁷ e ⁻	?
High # of photons detection	Yes	?

BACKUP

Pros and **cons** of PMTs

RELIABILITY

o 27 out of 494 PMTs in nT are either turned off or ignored during analysis → more than 5%
o Due to vacuum leaks, low PMT
o gain or electric noise

versität freiburg

Example of a recent bad behavior of a PMT when usual HV is applied

Pros and cons of PMTs

LOW DARK COUNT RATE & TESTED

Dark count rate (DCR) of $\sim 8.10^{-3} \text{ Hz/mm}^2$

Section of LZ array

universität freiburg

Top array of XENONnT

Bottom array of PandaX

 \rightarrow All R11410 Hamamatsu PMTs

LOW RADIOACTIVITY HAMAMATSU PMTS

- Photocathode and base of the PMTs
 with low radioactive material
- Is 20 to 50% less radioactive than
 R14110

universität freiburg

Material used show 3 times more leaks

MULTI PIXEL PHOTON COUNTER

- A type of silicon photomultiplier (SiPM)
- Avalanche photodiodes connected in parallel
- Is less radioactive

- $_{\circ}$ More stable over time
- Already used in other experiments
- But has 2 orders of magnitude higher dark count rates at LXe temperature

ABALONE

- Photon to photoelectron (photocathode)
 back to photon (scintillator) detected by
 SiPM
- Tested in gaseous xenon successfully
- $_{\odot}$ Less material \rightarrow low radioactivity
- Ten times lower DCR than traditional PMTs
- $_{\circ}$ High high voltage needed (25kV)
- Not tested enough yet

universität freiburg

<image>

Each SPAD can individually be turned off if DCR is too high SPADs are OR-ed to a macro pixel

HEiKA chip

5 SPADs activated but only 4 macro pixels

Event reconstructed as 4 photons hit

Activated SPADs

Reconstructed event

QUANTA GENERATION IN XENON TPC

