

Ultra-low intrinsic background for the direct dark matter search down to the neutrino fog with DARWIN/XLZD

Astroparticle School 2023

4-12 October 2023 Obertrubach-Bärnfels

Philipp Schulte

University Münster

living.knowledge

Evidences for Dark Matter

Galaxies rotation: Star velocities are faster than it could be explained by visible matter Gravitational lensing: Light from sources is distorted by gravity

Cosmic microwave background (CMB): Precision measurements reveal matter distribution

Monthly Notices of the Royal Astronomical Society, Volume 249, Issue 3, April 1991, Pages 523–537

Astrophysical Journal (2006) 648 L109

Journal of Physics G: Nuclear and Particle Physics 46 103003

Dark Matter

One promising candidate for Dark Matter

- Weakly Interacting Massive Particles (WIMPs):
 - Stable
 - Neutral
 - Massive particles predicted by models beyond the SM

- One direct detection method is using a dual-phase Time Projection Chambers (TPC) with xenon
- Xenon is used by virtue of heavy nucleus (Z = 54), high liquid density (\sim 3 g/cm³), low chemical reactivity

L. Althüser - xenonexperiment.org

Harmful backgrounds

External backgrounds

- Cosmogenic and radiogenic neutrons & neutrinos
- Surface backgrounds from detector walls
- Natural radioactivity

Internal backgrounds

- Accidental coincidence: Random pairing of S2&S1
- Materials emitting isotopes like ²²²Rn
- Intrinsic radioactivity like ²²²Rn, ⁸⁵Kr, ¹³⁶Xe, ¹²⁴Xe

@C. Weinheimer

Background reduction for a better WIMP search

Surface background reduction

- Surface background reduced by fiducial volume cut
- Optimized by better volume-surface ratio

External background reduction

- $\mu\text{-flux}$ reduction by 10^6 by going underground (LNGS with ${\sim}1.4\text{km}$ rock shield)
- Active and passive shield through a water Cherenkov $\mu\text{-/n-veto}$

Internal background reduction

- Material screening and selection \rightarrow Low-emanation materials
- Coating materials \rightarrow Barrier to trap radon after radium decays
- Minimization of intrinsic radioactive noble gases such as $^{85}{\rm Kr}$ and $^{222}{\rm Rn}$ \rightarrow Cryogenic distillation

Background reduction for a better WIMP search

Next-Generation Xenon Detector (DARWIN)

- Planed sensitivity: ${\sim}10^{\text{-}49}~\text{cm}^2$ in a region for masses of ${\sim}50~\text{GeV/c}^2$
- Optimizing volume-surface ratio by increasing detector
- Scaling up to 40t (or up to 80t) active xenon mass of the detector

Distillation

Example: Liquor distillery

- Based on difference in vapor pressure
- Obtaining pure ethanol (78°C) from a mixture with water (100°C) and methanol (65°C)
- Step 1: Methanol evaporates and is discarded as a precursor
- Step 2: Ethanol is enriched and extracted from water

Cryogenic xenon distillation for krypton

- Krypton (-153°C) the more volatile gas (xenon:-108°C) is collected at the top
- With ~5m height column: $^{nat}Kr < 48ppq$ (<4.8·10⁻¹⁴)
- Extract krypton enriched xenon (off gas) from the top \rightarrow Xenon loss
- \rightarrow Darwin ^{nat}Kr <30ppq (<3.10⁻¹⁴) with less off-gas

Online cryogenic distillation

Rn column

Jniversität

Münster

- Rn is continuously emanated from detector material and components
- For a reduction factor 2: Circulate mass with its halftime (3.8 d)
 → Need online distillation
- Rn (-62°C) is trapped in reboiler while xenon (-108°C) is evaporated \rightarrow re-liquification

DARWIN Rn column

- 222 Rn goal of <0.1 $\mu Bq/kg$ is ${\sim}10$ times lower then current XENONnT limit of ${\sim}0.8$ $\mu Bq/kg$
- ~10 times more mass than XENONnT \rightarrow Distillation throughput of 750kg/h (XENONnT: 66kg/h)
- Need a full heat pump to achieve enormous cooling

The LowRad Project

[bar]

Heat pump for re-liquification of xenon

- Reduction factor 2: circulate mass with halftime

$$t = \frac{1}{\lambda_{Rn}} = 5.5d \rightarrow \frac{50t}{132h} = 380\frac{\text{kg}}{\text{h}}$$

- For a purification of 50t in \leq 2d $\rightarrow 750 \frac{\text{kg}}{\text{h}} = 2120 \text{slpm}$
- Pressure - 1slpm needs 10W of cooling power \rightarrow 21kW
- Cooling power of a cool head $\sim 100-200W$
- \rightarrow Heat pump to achieve enormous cooling for the liquefying xenon

Not reducible background The neutrino fog

Neutrino fluxes

- Solar neutrinos: Proton-Proton chain, Bethe-Weizsäcker cycle
- Atmospheric neutrinos: Produced by cosmic rays
- Diffuse supernova neutrinos (DSNB)

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

- Standard model process were neutrino scatters with nucleus
- Nucleus remains in ground state and recoils \rightarrow Mimic WIMP signal
- Not reducible background
- Background reductions only down to the neutrino fog

Physical Review Letters 127, 251802

Progress of Theoretical and Experimental Physics (2020) 083C01

Thank you for Attention

Back up

Research program of the DARWIN/XLZD detector

Investigation of solar neutrinos DARWIN, JCAP 11 (2016) 017

- 7.2 ev/day in 30t for $E=(2-30)keV_{ee}$ (pp-neutrinos)
- Precision on neutrino flux of 0.15% (300tyr exposure)
- Measurement of v_{e} survival probability and weak mixing angle

Study of solar axions and axion-like particles (ALPs)

- Detecting hypothetical particles like solar axions and ALPs
- Measurement via axio-electric effect

Exploration of neutrinoless double beta decay Eur. Phys. J. C 80 (2020) 9, 808

- Searching for the extremely rare process of $0\nu\beta\beta$
- 8.9% of ¹³⁶Xe in natural xenon $\rightarrow \sim$ 3.5t in DARWIN
- Projected sensitivity $T_{1/2}=2.4 \times 10^{27}$ yr (50 tyr exposure)

arXiv:2203.02309 (2022)

- Dominated by beta decays from ²¹⁴Pb a daughter of ²²²Rn

- Additional components:
- Factor x5 improved background compared to XENON1T
- \rightarrow 134 events in ER band of ROI (15.8 ± 1.3) events/ $(t\cdot y\cdot keV)$
- → Assume flat ER background spectrum between 1 keV and 10 keV electronic recoil energies

