

^{83m}Kr N-line spectrum measurement at KATRIN

Jaroslav Štorek for the KATRIN collaboration

Introduction | Krypton-83m | Results

Direct measurement of neutrino mass

- Tritium beta decay kinematics $T_2 \rightarrow {}^{3}\text{HeT}^{+} + e^{-} + \bar{\nu}_e + Q(T_2)$ E: \checkmark measure ? \checkmark $E_{kin,\nu} + m_{\nu}c^2$
- Challenging because
 - Very small effect on the sub-eV scale
 - Low intensity in the endpoint region

KATRIN experiment

Energy measurement by electrostatic filter

KATRIN experiment

Inhomogeneous source potential \rightarrow different energy thresholds for different z

Impact of inhomogeneous potential

Monoenergetic electrons

Additional broadening

Retarding energy

- Continuous beta spectrum
 - Total source potential systematic effect on m_{ν}^2 : 0.02 eV²
 - Systematic budget on $m_{\nu}^2 \sim 0.017 \text{ eV}^2$ [1]

- → precise knowledge of the starting potential
 - Two parameters:
 - a) broadening σ_0
 - b) energy loss shift Δ_{10}

Rate

Scattering probability

Electric potential

Electron scattering off tritium molecules

- Electron scattering on T₂ leads to minimum loss of 13 eV
- Difference of rear and front potentials: Δ_{10}
 - Direct impact on neutrino mass shift

$$\Delta m_{\nu}^2 = -2\sigma_0^2 - \epsilon \Delta_{10}$$

$$\epsilon \sim 1.2 \text{ eV}$$

• Δ_{10} sensitivity ~ 10 meV needed

Krypton-83m

7 October 3, 2023 Jaroslav Štorek – 83mKr N-line spectrum measurement at KATRIN

Krypton electron source

Krypton-83m because

- 1. Gaseous mix krypton with tritium and obtain the same spatial distribution
- 2. Decays fast no contamination
- Two gamma transitions at 32.2 keV and 9.4 keV
- Weak 41.6 keV line is also present
- Highly converted into electrons
 - Discrete quasi-monoenergetic spectrum
 - Negligible line widths of N shell lines

Improve Δ_{10} by measuring N1 line

- Not well known N₁ line lies in the T₂ scattering region \rightarrow substitute T₂ by He
- Electron scattering off helium induces minimum energy loss of 21 eV
- Precise knowledge of N₁ line contribution
 - \rightarrow smaller uncertainty of Δ_{10}
- Reach mV uncertainties of the starting electric potential with keV lines

Results

10 October 3, 2023 Jaroslav Štorek – 83mKr N-line spectrum measurement at KATRIN

Karlsruhe Institute of Technology

Measurement results

- Strong rubidium source (10 GBq)
- 77 scan steps, 16 mins per step
- Foreseen uncertainties:

	Foreseen σ	Literature σ ^[2]
$E_{ m N1}^{ m rel}$ [eV]	$O(10^{-2})$	$\mathcal{O}(10^{-1})$
$\Gamma_{ m N1}^2$ [eV ²]	$O(10^{-3})$	$O(10^{-2})$
I _{N1} [%]	$\mathcal{O}(10^{-4})$	$\mathcal{O}(10^{-4})$

- Uncertainty of N₁ line parameters is influenced by spectrum complexity
 - Shake lines, 41 keV line
 - **35** fit parameters, 7 of interest

Summary and outlook

- KATRIN performs precision measurement of tritium beta spectrum
- Determine the source potential by ^{83m}Kr monoenergetic electrons
- Knowledge of N₁ line decreases uncertainty on electric potential observables
- Successful preliminary fits
- Complex N + shake line spectrum due to integrated mode
- Outlook:
 - Improve our model for 41 keV line and shake lines

Thank you for your attention!

Karlsruhe Institute of Technology

Backup

