Photon propagation in the ice of the South Pole

A toy simulation to study photon diffusion in dust layers of the Antarctic ice

HELMHOLTZ
Young Investigators
:8

IceCube

- Cubic-kilometer neutrino detector made of Antarctic ice buried below the surface.
- 86 strings with a total of 5160 digital optical modules (DOMs) used to sense and record neutrino events.
- Ice-top consist of 81 stations, built as a veto and calibration detector and to detect cosmic ray showers.
- DeepCore is located at the centre of the array, in a denser configuration to study neutrino oscillations.

Neutrino Detection

- Neutrino are electrically neutral leptons that rarely interact with matter.
- When they do react with molecules of ice, they can produce electrically charged secondary particles that emit Cherenkov radiation.
- This light can be detected by photomultiplier tubes within the DOMS in IceCube.
- The light pattern and photon arrival time are used to reconstruct direction and energy of the incoming neutrino.
- Understanding the optical properties of the Antarctic ice is crucial to the performance of IceCube.

Photons propagating in IceCube

Ice Anisotropies and Calibration

Dust layers and dust loggers

- Characterisation of physics quantities possible by calibrating the ice and instruments.
- Dust loggers shone a fan-shaped horizontal beam of laser light which is recorded by a downward- pointing Photo-Multiplier Tube (PMT) after scattering in the ice
- The loggers produced a record of dust layers in ice with very high resolution that have identical optical scattering and absorption
- These layers have so far been described in 10 m wide ice bins
- Optical anisotropy was observed : photon propagation is affected depending on their direction
- From dust loggers data we know that after 2000 m in depth, the South Pole ice presents a dust layer with higher scattering and absorption coefficients

MC Simulation: trace photons through homogeneous ice

- Homogeneous ice
- Isotropic scattering
- Number of photons: 10000
- Step size: 0.5 m
- Number of steps: 2000
- Scattering length $\lambda_{s}: 2.5 \mathrm{~m}$
- Absorption length $\lambda_{a}: 60 \mathrm{~m}$
- Probability of scattering at each step: $P_{s} \simeq d x / \lambda_{s}$
- Probability of absorption at each step: $P_{a} \simeq d x / \lambda_{a}$

100 steps trajectories of first 200 photons starting from the origin

Photon propagation

Homogeneous ice

- Photon arrival time distribution along horizontal and vertical direction, at a distance of $d=20 \mathrm{~m}$
- Only scattering

- Photon arrival time distribution along the horizontal and vertical direction, at a distance of $d=20 \mathrm{~m}$
- Scattering and Absorption

Horizontal and Vertical propagation

Homogeneous Ice

- Arrival time distribution of photons reaching 20 m along the \mathbf{x}-axis and the \mathbf{z}-axis

- Ratio of with and without absorption distributions, for both vertical and horizontal propagation

Photon propagation as diffusive process

- After a large number of scatterings the process can be considered diffusive (Random Walk)
- Fit of the distribution using Green's function for radiative transport

$$
u(d, t)=\frac{1}{(4 \pi D t)^{3 / 2}} e^{\frac{-d^{2}}{4 D t}} e^{\frac{-c_{i} t}{\lambda_{a}}}
$$

- $u(d, t)$: density of photons (normalised to unity at $t=0$)
- d distance from the source at time t
. $D=\frac{c_{i} \lambda_{s}}{3}$ constant of diffusion
- c_{i} velocity of light in ice

Simulation

parameters:

- d=10 m, 30000 photons, $\mathrm{dx}=0.1$, 5000 steps
- $\lambda_{s}=0.5 m, \lambda_{a}=60 m$
- 10 repetitions

MC Simulation: trace photons through inhomogeneous ice

- Layered ice
- Isotropic scattering
- Number of photons: 10000
- Step size: 0.05 m
- Number of steps: 10000
- Dust layer modelled with 4 thin layers with higher scattering and absorption coefficients separated by thicker layers with lower interaction probability

Arrival time of photons as a function of depth

- Study of the arrival time of the first $10 \%, 50 \%$ and last 10% photons to an observer placed $\mathbf{6 0 ~ m}$ from the emitter
- Depth is the z-coordinate of the halfdistance between observer and receiver
- Two layer configurations: $\mathbf{1 ~ m}$ and $\mathbf{1 0}$ m wide bins

- Scattering and absorption lengths change of a factor ten in the two configurations
- Photons arrival time for vertical propagation becomes similar for the late photons
- Horizontally, photons take more time to reach the observer in wider bins

Summary

- The code works well for isotropic scattering and absorption in homogeneous ice
- Green's function for radiative transport reconstructs scattering and absorption length from the arrival time PDFs
- There is a difference in arrival time for vertical propagation of early photons between 1 m and 10 m wide bins
- Horizontal propagation has a clear different behaviour in the two bins configuration

Next steps:

- Use another diffusive model to fit arrival time distribution in inhomogeneous ice
- Recreate the dust layer depth profile for both configuration by tuning the simulation parameters

Thank you!

Contact

DESY. Deutsches
Elektronen-Synchrotron
www.desy.de
Teresa Pernice
teresa.pernice@desy.de

Backup slides

Scattering and Absorption length

As a function of distance between source and observer

- Ratio between the value obtained from the fit of scattering (absorption) length over the true value (of the MC simulation)
- For shorter distances both scattering and absorption lengths are underestimated.

Scattering coefficient as a function of depth

