Galactic cosmic rays (III)

Philipp Mertsch

ECAP school 10 October 2023

Recap (I): Fundamental observations

- Power law → stochastic acceleration
- Features \rightarrow origin

Anisotropies

• Dipole
$$a = O(10^{-3...-2})$$

 \rightarrow Requires isotropisation

Composition

carbon boron nucleus • nucleus

- Primaries: present in sources
- Secondaries: produced on route
- $\rightarrow\,$ Requires isotropisation

Recap (II): Key insights

The slab model

- Definition of grammage
- From B/C: average grammage of \sim (a few) $g\,cm^{-2}$
- Requires crossing the disk thousands of times

$$\frac{\mathrm{d}N_1}{\mathrm{d}t} = -\frac{N_1}{t_{\rm esc}} - N_1\Gamma_1 + Q_1$$
$$\frac{\mathrm{d}N_2}{\mathrm{d}t} = -\frac{N_2}{t_{\rm esc}} - N_2\Gamma_2 + \Gamma_{1\to 2}N_1$$

The leaxy-box model

- $t_{\rm res} = \mathcal{O}(10) \, {\rm Myr}$
- Cosmic-ray clocks
- Grammage rigidity-dependent

Supernova remnants

- Presence of strong shocks
- Observation of PeV particles
- 3 Energetics

Recap (III): The transport equation

$$\begin{split} \frac{\partial \psi_j}{\partial t} = & \nabla \cdot \left(\kappa \cdot \nabla \psi_j - \mathbf{U} \psi_j \right) \\ &+ \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_j \right) \\ &+ \frac{\partial}{\partial p} \left(-\frac{\mathrm{d}p}{\mathrm{d}t} \psi_j + \frac{p}{3} \left(\nabla \cdot \mathbf{U} \right) \psi_j \right) \\ &- v n_{gas} \sigma_j \psi_j - \frac{\psi_j}{\tau_j} \\ &+ v n_{gas} \sum_{k > j} \sigma_{k \to j} \psi_k + \sum_{k > j} \frac{\psi_k}{\tau_{k \to j}} \\ &+ S_j \end{split}$$

spatial diffusion and advection

momentum diffusion

momentum change incl. adiabatic

spallation and decay

spallation and decay

primary sources

Addition (I)

• Charged particles interact resonantly with wave:

$$k_{
m res} = r_g^{-1} \propto p^{-1}$$

• Scattering rate Γ is gyrofrequency Ω reduced by density of resonant plasma waves:

$$\Gamma(k) \simeq \Omega \frac{\delta \tilde{B}^2(k)}{B_0^2} \simeq \Omega \frac{k P(k)}{B_0^2}$$

• The power spectrum of resonant plasma waves is:

$$P(k) \sim \int \mathrm{d}^3 r \, \mathrm{e}^{i\mathbf{r}\cdot\mathbf{k}} \langle \delta \mathbf{B}(\mathbf{r}_0) \delta \mathbf{B}(\mathbf{r}_0 + \mathbf{r})
angle \propto k^{-5/3}$$

• Interaction with ensemble of random waves \rightarrow diffusion:

$$\kappa \simeq rac{v^2}{3\Gamma} \propto rac{1}{\Omega} \left(rac{k P(k)}{B_0^2}
ight)^{-1} \Big|_{k=k_{
m res}} \propto p^{1/3}$$

Addition (II)

Kuhlen, Mertsch, Phan (2022) [arXiv:2211.05881]

Addition (III)

• Mean-square deflection from crossing one domain:

$$\langle (\delta \theta)^2 \rangle \simeq \left(\frac{L_{\rm c}}{r_{\rm g}} \right)^2$$

• Number of domains crossed in time Δt :

$$N\simeq rac{c\Delta t}{L_{
m c}}$$

• Mean-square deflection from crossing *N* domains:

$$\langle (\Delta \theta)^2 \rangle = N \langle (\delta \theta)^2 \rangle \simeq \frac{c \Delta t}{L_{\rm c}} \left(\frac{L_{\rm c}}{r_{\rm g}} \right)^2$$

• When
$$\langle (\Delta heta)^2
angle = 1$$
, $\Delta t \equiv t_{\sf sc}$:

$$t_{\rm sc} = \frac{L_{\rm c}}{c} \left(\frac{r_{\rm g}}{L_{\rm c}}\right)^2$$

• Spatial diffusion coefficient:

$$\kappa = \frac{c^2}{3} t_{\rm sc} = \frac{c L_{\rm c}}{3} \left(\frac{r_{\rm g}}{L_{\rm c}} \right)^2$$

Outline

- Motivation
- Ø Fundamental observations
 - Spectrum
 - Anisotropy
 - Composition
- 8 Key insights
 - Grammage
 - Cosmic ray clocks
 - Rigidity-dependence
 - Source candidates
- The transport equation
- 6 Exercises
- **6** Shock acceleration
 - Shocks
 - Macroscopic approach
 - Microscopic approach
 - Additional effects
- Galactic transport
 - Leaky box model
 - 1D model
 - Green's function
 - Numerical codes

- Open question 1: The positron excess
 - Sources of positrons
 - Acceleration of secondaries
- Open question 2: Self-confinement
 - Gamma-ray haloes
 - Near-source transport
- Open question 3: A swiss-cheese galaxy
- Open question 4: The ionisation puzzle
- Open question 5: Small-scale anisotropies
 - Data
 - Test particle simulations
- Open question 6: Diffuse emission
 - Modelling
 - Results
 - 3D gas maps
- Summary & Conclusions

Outline

- Motivation
- Pundamental observations
 - Spectrum
 - Anisotropy
 - Composition
- 8 Key insights
 - Grammage
 - Cosmic ray clocks
 - Rigidity-dependence
 - Source candidates
- The transport equation
- 6 Exercises
- **6** Shock acceleration
 - Shocks
 - Macroscopic approach
 - Microscopic approach
 - Additional effects
- Galactic transport
 - Leaky box model
 - 1D model
 - Green's function
 - Numerical codes

- ⁽³⁾ Open question 1: The positron excess
 - Sources of positrons
 - Acceleration of secondaries
- Open question 2: Self-confinement
 - Gamma-ray haloes
 - Near-source transport
- Open question 3: A swiss-cheese galaxy
- Open question 4: The ionisation puzzle
- Open question 5: Small-scale anisotropies
 Data
 - Test particle simulations
- Open question 6: Diffuse emission
 - Modelling
 - Results
 - 3D gas maps
- Summary & Conclusions

Shocks are ubiquitous

- A flow is characterised by ρ , **U**, T
- In general, functions of position
- If they change abruptly, this is called a shock
- Shocks are very common in astrophysics:
 - Blast wave explosion
 - Accretion (onto star, black hole, galaxy cluster)
 - Mergers
 - Supersonic winds / outflows
 - Bow shocks (=supersonic flow around obstacle)

Shocks are inevitable

- SN is expelling material at $U_{\rm sh} > c_s$
- Supersonic flow close to SN, subsonic flow at infinity
- Nature of supersonic and subsonic flows very different

 \rightarrow Connection must be discontinuous: formation of shock

Parallel shock

- Consider non-relativistic shock in its rest frame
- Discontinuity in gas density and velocity:

$$ho_2=r
ho_1$$
 and $U_2=rac{1}{r}U_1$

 $\rightarrow\,$ Gas is compressed and slowed down

Compression ratio

Depends on the ratio of specific heats γ :

$$r \simeq rac{\gamma+1}{\gamma-1}$$

For ideal mono-atomic gas:
$$\gamma = 5/3 \Rightarrow r = 4$$

The transport equation

$$\begin{split} \frac{\partial \psi_j}{\partial t} = & \nabla \cdot \left(\kappa \cdot \nabla \psi_j - \mathbf{U} \psi_j \right) \\ &+ \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_j \right) \\ &+ \frac{\partial}{\partial p} \left(-\frac{\mathrm{d} p}{\mathrm{d} t} \psi_j + \frac{p}{3} \left(\nabla \cdot \mathbf{U} \right) \psi_j \right) \\ &- v n_{\mathrm{gas}} \sigma_j \psi_j - \frac{\psi_j}{\tau_j} \\ &+ v n_{\mathrm{gas}} \sum_{k>j} \sigma_{k \to j} \psi_k + \sum_{k>j} \frac{\psi_k}{\tau_{k \to j}} \\ &+ S_j \end{split}$$

spatial diffusion and advection

momentum diffusion

momentum change incl. adiabatic

spallation and decay

spallation and decay

primary sources

The transport equation

 $\begin{aligned} \frac{\partial \psi_j}{\partial t} = \nabla \cdot \left(\boldsymbol{\kappa} \cdot \nabla \psi_j - \mathbf{U} \psi_j \right) \\ + \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_j \right) \\ + \frac{\partial}{\partial p} \left(-\frac{\mathrm{d}p}{\mathrm{d}t} \psi_j + \frac{p}{3} \left(\nabla \cdot \mathbf{U} \right) \psi_j \right) \\ - v n_{\text{gas}} \sigma_j \psi_j - \frac{\psi_j}{\tau_j} \\ + v n_{\text{gas}} \sum_{k>j} \sigma_{k \to j} \psi_k + \sum_{k>j} \frac{\psi_k}{\tau_{k \to j}} \\ + S_j \end{aligned}$

spatial diffusion and advection

momentum diffusion

momentum change incl. adiabatic

spallation and decay

spallation and decay

primary sources

Seminal papers in 1977/78 by Krymsky; Axford, Leer, Skaldron; Blandford, Ostriker

• Consider steady-state transport equation for phase-space density *f*:

$$U\frac{\partial f}{\partial x} - \frac{\partial}{\partial x}\kappa\frac{\partial f}{\partial x} - \frac{p}{3}\frac{\mathrm{d}U}{\mathrm{d}x}\frac{\partial f}{\partial p} = 0$$

• For $x \neq 0$,

$$f(x,p) = \begin{cases} g_1(p) \exp\left[\frac{x}{\kappa(p)/U}\right] + f_1(p) & \text{for } x < 0\\ f_2(p) & \text{for } x > 0 \end{cases}$$

Seminal papers in 1977/78 by Krymsky; Axford, Leer, Skaldron; Blandford, Ostriker

• Can derive matching conditions and find for the spectrum at shock,

$$f_2(p) = \Gamma p^{-\Gamma} \int_0^p \mathrm{d}p' \, {p'}^{\Gamma-1} f_1(p') + \mathrm{const.} \times p^{-\Gamma}$$

with spectral index $\Gamma \equiv \frac{3r}{r-1}$

• With
$$r \simeq \frac{\gamma+1}{\gamma-1} = 4$$
, $f(0,p) \propto p^{-4} \Rightarrow \psi(0,p) = 4\pi p^2 f(0,p) \propto p^{-2}$

Strong (r = 4) shock accelerates CRs to p^{-2} spectrum!

Fermi (1949)

• Collision of particle with ∞ massive cloud

- Two types of collisions:
 - $\theta \in [0, \frac{\pi}{2}] \quad \text{``head-on''} \\ \theta \in [\frac{\pi}{2}, \pi] \quad \text{``trailing''}$

I Transform *E* and p_x to cloud frame (primed):

$$E'_{1} = \gamma(E_{1} + Up_{1}\cos\theta)$$
$$p'_{1x} = p'_{1}\cos\theta' = \gamma\left(p_{1}\cos\theta + \frac{U}{c^{2}}E_{1}\right)$$

1 Transform *E* and p_x to cloud frame (primed):

$$E'_{1} = \gamma(E_{1} + Up_{1}\cos\theta)$$
$$p'_{1x} = p'_{1}\cos\theta' = \gamma\left(p_{1}\cos\theta + \frac{U}{c^{2}}E_{1}\right)$$

2 Collision in cloud frame:

- Energy conserved: E'_2 = E'_1
 Momentum flipped: p'_{2x} = -p'_{1x}

3 Transform back to observer frame:

$$\begin{split} E_2 &= \gamma \left(E_2' - U p_{2x}' \right) \\ &= \gamma \left(\gamma \left(E_1 + U p_1 \cos \theta \right) + U \gamma \left(p_1 \cos \theta + \frac{U}{c^2} E_1 \right) \right) \\ &= \gamma^2 \left(E_1 + 2 U p_1 \cos \theta + E_1 \left(\frac{U}{c} \right)^2 \right) \\ &= \gamma^2 E_1 \left(1 + 2 U \frac{v_1}{c^2} \cos \theta + \left(\frac{U}{c} \right)^2 \right) \end{split}$$

3 Transform back to observer frame:

$$E_{2} = \gamma^{2} E_{1} \left(1 + 2U \frac{v_{1}}{c^{2}} \cos \theta + \left(\frac{U}{c}\right)^{2} \right)$$

A Expand γ^2 in U/c $\gamma^2 = \left(1 - (U/c)^2\right)^{-1} \simeq 1 + (U/c)^2$ and let $v_1 \simeq c$:

$$\Rightarrow E_2 \simeq E_1 \left(1 + 2\frac{U}{c}\cos\theta + 2\left(\frac{U}{c}\right)^2 \right)$$
$$\Rightarrow \Delta E \equiv E_2 - E_1 = E_1 \left(2\frac{U}{c}\cos\theta + 2\left(\frac{U}{c}\right)^2 \right)$$

$\cos heta > 1$	\Rightarrow	energy gain
$\cos heta < 1$	\Rightarrow	energy loss

Seminal papers in 78 by Bell

- Particle crossing shock always suffers "head-on" collisions
- ightarrow Systematic energy gain, $\Delta E/E \sim (U_{
 m sh}/c)$

Non-linear shock acceleration

Shock modification

- CRs contribute to the pressure of the system
- Slow-down of flow \rightarrow precursor
- Compression depends on position
- $\rightarrow\,$ Spectral curvature

Outline

- Motivation
- Pundamental observations
 - Spectrum
 - Anisotropy
 - Composition
- 8 Key insights
 - Grammage
 - Cosmic ray clocks
 - Rigidity-dependence
 - Source candidates
- The transport equation
- 6 Exercises
- **6** Shock acceleration
 - Shocks
 - Macroscopic approach
 - Microscopic approach
 - Additional effects
- Galactic transport
 - Leaky box model
 - 1D model
 - Green's function
 - Numerical codes

- **3** Open question 1: The positron excess
 - Sources of positrons
 - Acceleration of secondaries
- **Open question 2**: Self-confinement
 - Gamma-ray haloes
 - Near-source transport
- Open question 3: A swiss-cheese galaxy
- Open question 4: The ionisation puzzle
- Open question 5: Small-scale anisotropies
 Data
 - Test particle simulations
- Open question 6: Diffuse emission
 - Modelling
 - Results
 - 3D gas maps
- Summary & Conclusions

The transport equation

$$\frac{\partial \psi_j}{\partial t} - \nabla \cdot \left(\kappa \cdot \nabla \psi_j - \mathbf{U}\psi_j\right) - \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_j\right) + \frac{\partial}{\partial p} \left(\frac{\mathrm{d}p}{\mathrm{d}t} \psi_j - \frac{p}{3} \left(\nabla \cdot \mathbf{U}\right) \psi_j\right)$$
$$= S_j + \sum_{k>j} \left(\nu n_{\mathsf{gas}} \sigma_{k\to j} + \frac{1}{\tau_{k\to j}}\right) \psi_k - \left(\nu n_{\mathsf{gas}} \sigma_j + \frac{1}{\tau_j}\right) \psi_j$$

Boundary conditions: $\psi_j(r,z) = 0$ for $z = \pm z_{\max}$ or r = R

Philipp Mertsch

Galactic cosmic rays (III

Leaky box model

• Can derive leaky box model from transport equation

$$\frac{\partial \psi_j}{\partial t} - \nabla \cdot \left(\kappa \cdot \nabla \psi_j - \mathbf{U} \psi_j \right) = q_j + \sum_{j < k} \left(\mathsf{vn}_{\mathsf{gas}} \sigma_{k \to j} \right) \psi_k - \left(\mathsf{vn}_{\mathsf{gas}} \sigma_i \right) \psi_j$$

• Integrate over CR halo, $N_j \equiv \int \mathrm{d}V \,\psi_j$:

$$\frac{\partial N_j}{\partial t} - \int \mathrm{d}V \left[\nabla \cdot \underbrace{\left(\kappa \cdot \nabla \psi_j - \mathbf{U} \psi_j \right)}_{= -\mathbf{F}_j} \right] = \frac{\partial N_j}{\partial t} + \underbrace{\int \mathrm{d}\mathbf{S} \cdot \mathbf{F}_j}_{\equiv -\frac{N_j}{\tau_{\mathsf{esc}}}} = Q_j + \sum_{j < k} \left(v n_{\mathsf{gas}} \sigma_{k \to j} \right) N_k - \left(v n_{\mathsf{gas}} \sigma_i \right) N_j$$

Simplified 1D model

Simplify transport equation:

$$\begin{split} \frac{\partial \psi_j}{\partial t} &-\kappa \frac{\partial^2 \psi_j}{\partial z^2} - U \frac{\partial \psi_j}{\partial z} + \left(v n_{gas}(z) \sigma_j + \frac{1}{\tau_j} \right) \psi_j = q_j + \sum_{j < k} \left(v n_{gas}(z) \sigma_{k \to j} + \frac{1}{\tau_{k \to j}} \right) \psi_k \\ &-\kappa \frac{\partial^2 \psi_j}{\partial z^2} - U \frac{\partial \psi_j}{\partial z} + \left(2h\delta(z) v n_{gas} \sigma_j + \frac{1}{\tau_j} \right) \psi_j = 2h\delta(z)q_j + \sum_{j < k} \left(2h\delta(z) v n_{gas} \sigma_{k \to j} + \frac{1}{\tau_{k \to j}} \right) \psi_k \end{split}$$

Solution

۱

$$\psi_{j}(z,p) = \frac{2z_{\max}\left(q_{j} + \sum_{k>j} vn_{gas}\sigma_{k\to j}\psi_{k}\right)e^{\frac{zU}{2\kappa}}\sinh\left[\frac{z_{\max}-z}{z_{j}}\right]}{\left(2hvn_{gas}\sigma_{j} + U + \frac{\kappa}{z_{\max}}\frac{z_{\max}}{z_{j}}\coth\left[\frac{z_{\max}}{z_{j}}\right]\right)\sinh\left[\frac{z_{\max}}{z_{j}}\right]}$$
with $z_{j} \equiv \left(\left(\frac{U}{2\kappa}\right)^{2} - \frac{1}{\tau_{j}\kappa^{2}}\right)^{-1/2}$

Simplified 1D model

Simplify transport equation:

$$\begin{split} \frac{\partial \psi_j}{\partial t} &-\kappa \frac{\partial^2 \psi_j}{\partial z^2} - U \frac{\partial \psi_j}{\partial z} + \left(v n_{gas}(z) \sigma_j + \frac{1}{\tau_j} \right) \psi_j = q_j + \sum_{j < k} \left(v n_{gas}(z) \sigma_{k \to j} + \frac{1}{\tau_{k \to j}} \right) \psi_k \\ &-\kappa \frac{\partial^2 \psi_j}{\partial z^2} - U \frac{\partial \psi_j}{\partial z} + \left(2h\delta(z) v n_{gas} \sigma_j + \frac{1}{\tau_j} \right) \psi_j = 2h\delta(z)q_j + \sum_{j < k} \left(2h\delta(z) v n_{gas} \sigma_{k \to j} + \frac{1}{\tau_{k \to j}} \right) \psi_k \end{split}$$

Solution

$$\psi_{j}(0, p) = \frac{2z_{\max}\left(q_{j} + \sum_{k>j} \nu n_{gas}\sigma_{k\to j}\psi_{k}\right) e^{\frac{zU}{2\kappa}} \sinh\left[\frac{z_{\max}-z}{z_{j}}\right]}{\left(2h\nu n_{gas}\sigma_{j} + U + \frac{\kappa}{z_{\max}}\frac{z_{\max}}{z_{j}} \coth\left[\frac{z_{\max}}{z_{j}}\right]\right) \sinh\left[\frac{z_{\max}}{z_{j}}\right]}$$

with $z_{j} \equiv \left(\left(\frac{U}{2\kappa}\right)^{2} - \frac{1}{\tau_{j}\kappa^{2}}\right)^{-1/2} \to \infty$; evaluate at $z = 0$

ambient CR spectrum = $\frac{\text{source spectrum}}{\text{diffusion coefficient}}$

Philipp Mertsch

Galactic cosmic rays (III)

Green's function approach

 \bullet Solve simplified transport equation for e^\pm

$$\frac{\partial \psi_{\pm}}{\partial t} - \nabla \cdot \kappa \cdot \nabla \psi_{\pm} - \frac{\partial}{\partial E} \left(\frac{\mathrm{d}E}{\mathrm{d}t} \psi_{\pm} \right) = \delta(\mathbf{r} - \mathbf{r}_0) \delta(t) Q(E)$$

- For homogeneous energy loss rate dE/dt, energy becomes pseudo time
- Heat equation

$$\Rightarrow \psi_{\pm}(\mathbf{r}, E, t) = \left(\pi \ell^2(E, t)\right)^{-3/2} e^{-|\mathbf{r}-\mathbf{r}_0|^2/\ell^2(E, t)} \frac{\frac{\mathrm{d}E}{\mathrm{d}t}(E)}{\frac{\mathrm{d}E}{\mathrm{d}t}(E_0)} Q(E_0)$$

where $E_0 = E_0(E, t)$ and

$$\ell^{2}(E,t) = 4 \int_{E_{0}}^{E} \mathrm{d}E' \frac{\kappa(E')}{\mathrm{d}E/\mathrm{d}t}$$

Green's function

$$\psi_{\pm}(\mathbf{r}, E, t) = \left(\pi \ell^2(E, t)\right)^{-3/2} e^{-|\mathbf{r}-\mathbf{r}_0|^2/\ell^2(E, t)} \frac{\frac{\mathrm{d}E}{\mathrm{d}t}(E)}{\frac{\mathrm{d}E}{\mathrm{d}t}(E_0)} Q(E_0)$$

Numerical codes

- In less restricted setups, e.g.
 - 3D
 - Inhomogeneous inputs, e.g. gas densities
 - Anisotropic diffusion
 - Self-generated turbulence

transport equation cannot be solved analytically

- \rightarrow Solve numerically
 - Many codes available: ٠

GALPROP

MCMC analysis

Mertsch, Vittino, Sarkar (2021)

Philipp Mertsch

Outline

- Motivation
- Ø Fundamental observations
 - Spectrum
 - Anisotropy
 - Composition
- 8 Key insights
 - Grammage
 - Cosmic ray clocks
 - Rigidity-dependence
 - Source candidates
- The transport equation
- 6 Exercises
- **6** Shock acceleration
 - Shocks
 - Macroscopic approach
 - Microscopic approach
 - Additional effects
- Galactic transport
 - Leaky box model
 - 1D model
 - Green's function
 - Numerical codes

- **③** Open question 1: The positron excess
 - Sources of positrons
 - Acceleration of secondaries
- Open question 2: Self-confinement
 - Gamma-ray haloes
 - Near-source transport
- Open question 3: A swiss-cheese galaxy
- Open question 4: The ionisation puzzle
- Open question 5: Small-scale anisotropies
 - Data
 - Test particle simulations
- Open question 6: Diffuse emission
 - Modelling
 - Results
 - 3D gas maps
- Summary & Conclusions

Outline

- Motivation
- Pundamental observations
 - Spectrum
 - Anisotropy
 - Composition
- 8 Key insights
 - Grammage
 - Cosmic ray clocks
 - Rigidity-dependence
 - Source candidates
- The transport equation
- 6 Exercises
- **6** Shock acceleration
 - Shocks
 - Macroscopic approach
 - Microscopic approach
 - Additional effects
- Galactic transport
 - Leaky box model
 - 1D model
 - Green's function
 - Numerical codes

- ⁽³⁾ Open question 1: The positron excess
 - Sources of positrons
 - Acceleration of secondaries
- Open question 2: Self-confinement
 - Gamma-ray haloes
 - Near-source transport
- Open question 3: A swiss-cheese galaxy
- Open question 4: The ionisation puzzle
- Open question 5: Small-scale anisotropies
 Data
 - Test particle simulations
- Open question 6: Diffuse emission
 - Modelling
 - Results
 - 3D gas maps
- Summary & Conclusions

- Cosmic rays are ionising dense molecular clouds
- But the observed ionisation is much higher than expected
- Maybe the flux of cosmic rays elsewhere is different from what it is here?!

Phan, Morlino, Gabici (2018)

Philipp Mertsch

Ionisation in molecular clouds

$$\begin{split} p_{CR} + H_2 &\rightarrow p_{CR} + H_2^+ + e^- \\ e_{CR}^- + H_2 &\rightarrow e_{CR}^- + H_2^+ + e^- \end{split}$$

 $\zeta_{H_2} \equiv$ (production rate of H_2^+ by cosmic rays)

Measurements

- Absorption of light from background star
- Line ratios sensitive to production of H⁺₂
 - In diffuse clouds ($N_{\rm H} \lesssim 10^{22} \, {\rm cm}^{-2}$): H₃⁺ produced by charge exchange
 - In dense clouds ($N_{\rm H} \gtrsim 10^{22} \, {\rm cm}^{-2}$): H₃⁺ reacts to HCO⁺, DCO⁺, N₂H⁺

Computation

- Galactic propagation:
 - Source distribution, spectrum
 - Propagation parameters
 - \rightarrow Interstellar intensity $j_{\rm ISM} = v/(4\pi)\psi$
- Transport into cloud:
 - Energy losses
 - Ballistic or diffusive Skilling & Strong (1976); Padovani et al. (2009); Morlino & Gabici (2015);
 - Phan et al. (2018); Ivlev et al. (2018)
 - \rightarrow Intensity averaged over cloud \overline{j}
- Ionisation rate:

$$\tilde{J}_{H_2} = 4\pi \int_{E_l}^{\infty} \mathrm{d}E \,\sigma_{\mathrm{ion}}(E) \left(1 + \phi(E)\right) \bar{j}(E)$$

Galactic propagation

• Transport equation:

• Source term:

$$\frac{\partial}{\partial t}\psi - \nabla \cdot (\kappa \cdot \nabla - \mathbf{u})\psi - \frac{\partial}{\partial p}(\dot{p}\psi) = q$$
$$\stackrel{\equiv \mathcal{L}\psi}{= \delta^{(3)}(\mathbf{x} - \mathbf{x}')\delta(t - t')\delta(p - p')}$$
$$q = q(\mathbf{x}, t, p) = \underbrace{s(\mathbf{x}, t)}_{\text{src. density}} \cdot \underbrace{s_p(p)}_{\text{spectrum}}$$

• Solution:
$$\psi(\mathbf{x}, t, p) = \int d\mathbf{x}' dt' dp' \mathcal{G}(\mathbf{x} - \mathbf{x}', t - t', p, p') \underbrace{s(\mathbf{x}', t')}_{\text{src. density spectrum}} \underbrace{s_p(p')}_{\text{src. density spectrum}}$$

Voyager data

• Source term:

$$q = q(\mathbf{x}, t, p) = \underbrace{s(\mathbf{x}, t)}_{\text{src. density}} \cdot \underbrace{s_p(p)}_{\text{spectrum}}$$

Vittino, PM, Gast, Schael, PRD 100 (2019) 043007

Problem # 1

$\begin{array}{l} \mbox{Reproducing Voyager } e^+ + e^- \\ \mbox{requires unmotivated break in source spectrum} \\ \mbox{at few hundred MeV} \end{array}$

Cumming et al. (2016); Orlando (2018); Boschini et al. (2018); Jóhannesson et al. (2018); Bisschoff et al. (2019)

Philipp Mertsch

Padovani et al. (2009); Indriolo (2012); Phan, Morlino, Gabici (2018); Gabici (2021)

Padovani et al. (2009); Indriolo (2012); Phan, Morlino, Gabici (2018); Gabici (2021)

Caselli et al. (2018); Williams et al. (1998); Maret et al. (2007); Indriolo et al. (2012); Bialy et al. (2022)

Problem # 2

Excess and large scatter in measured ionisation rate

Maybe the Voyager spectrum is not representative for the spectra elsewhere?

Source discreteness

Phan, Schulze, Mertsch, Recchia, Gabici (2021)

Assuming smooth source density is good approximation if

(diffusion-loss length) \gg (average source separation)

- · However, energy losses can severely limit diffusion-loss length
- Examples:
 - High-energy e[±] Malyshev *et al.* (2009) Blasi & Amato (2010), PM (2011, 2018),

Manconi et al. (2017, 2019, 2020); Cholis et al. (2018, 2021), Evoli et al. (2020), Orusa et al. (2021)

Low-energy CRs

Philipp Mertsch

Monte Carlo simulation

Phan, Schulze, Mertsch, Recchia, Gabici (2023)

- Numerically solve transport equation for point-like sources
- Solutions on a grid in distance, age and momentum
- Interpolation allows approximating $\mathcal{G}(\mathbf{x} \mathbf{x}', t t', p, p')$
- Draw random distances and ages from <u>s(x, t)</u> src. density
- Compute

$$\psi(\mathbf{x}, t, p) = \int \mathrm{d}p' \sum_{n} \mathcal{G}(\mathbf{x} - \mathbf{x}_{n}, t - t_{n}, p, p') s_{p}(p')$$

for each member of ensemble of realisations

ightarrow Ensemble of intensities ψ

GeV vs MeV

Phan, Schulze, Mertsch, Recchia, Gabici (2023)

(diffusion-loss length) \gg (average source separation)

 $\Rightarrow {\rm little \ fluctuation} \\ \Rightarrow {\rm smooth \ approximation \ is \ good}$

(diffusion-loss length) \ll (average source separation)

 $\Rightarrow {\rm sizeable \ fluctuations} \\ \Rightarrow {\rm smooth \ approximation \ is \ bad}$

Galactic cosmic rays (III)

Cosmic ray flux is a stochastic quantity

Results: protons & electrons

Phan, Schulze, Mertsch, Recchia, Gabici (2021)

- Voyager 1 data inside uncertainty band
- $\rightarrow\,$ Source discreteness effects important

Result # 1

 $\rightarrow\,$ No need for unmotivated break in source spectrum!

Philipp Mertsch

Phan, Schulze, Mertsch, Recchia, Gabici (2023)

Phan, Schulze, Mertsch, Recchia, Gabici (2023)

Result # 2

• Local ISM: improvement, but still too low

Philipp Mertsch

Galactic cosmic rays (III

Phan, Schulze, Mertsch, Recchia, Gabici (2023)

Result # 2

- Local ISM: improvement, but still too low
- Spiral Arm: systematic shift up

Philipp Mertsch

Galactic cosmic rays (III)

Outline

- Motivation
- Pundamental observations
 - Spectrum
 - Anisotropy
 - Composition
- 8 Key insights
 - Grammage
 - Cosmic ray clocks
 - Rigidity-dependence
 - Source candidates
- The transport equation
- **6** Exercises
- **6** Shock acceleration
 - Shocks
 - Macroscopic approach
 - Microscopic approach
 - Additional effects
- Galactic transport
 - Leaky box model
 - 1D model
 - Green's function
 - Numerical codes

- ⁽³⁾ Open question 1: The positron excess
 - Sources of positrons
 - Acceleration of secondaries
- Open question 2: Self-confinement
 - Gamma-ray haloes
 - Near-source transport
- Open question 3: A swiss-cheese galaxy
- Open question 4: The ionisation puzzle
- Open question 5: Small-scale anisotropies
 Data
 - Test particle simulations
- Open question 6: Diffuse emission
 - Modelling
 - Results
 - 3D gas maps
- Summary & Conclusions

Summary & Conclusions

Acceleration

Particles gain energy while scattering in converging flow

Galactic propagation

High precision experiments \rightarrow significantly increased parameter space

Open questions

- e^+ excess
- Self-confinement
- A swiss-cheese galaxy
- Ionisation puzzle
- Small-scale anisotropies
- Diffuse emission

Any questions?